Skip to main content

Advertisement

Log in

Synthesis and Properties of Mg-Based Foams by Infiltration Casting Without Protective Cover Gas

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Fabrication and characterization of Mg-based scaffolds by infiltration casting, without protective cover gas, are presented. Distinctive results were observed among the foams depending on the precise selection of casting variables. Foams with pore sizes ranging from 590 to 1040 µm, porosities ranging from 60.01 to 79.35%, and measured Young’s moduli ranging from 0.8 to 1.9 GPa, were obtained. These architected parameters for this cellular material were found to match the structural properties of cancellous bone while satisfying the mechanical requirements to support the bone healing process (0.3-3 GPa). Casting temperature and melting time were set at 680 °C and 10 min for infiltrating 590 µm salt particles. A salt flux combination containing MgCl2, MgO, CaF2, and KCl, is used to protect the molten metal, and its effect on ignition and oxidation of the Mg alloy is evaluated. The results of the crystalline phase and chemical analysis indicate a safe production process since there is no evidence of high contamination or new-formed phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, and L. Tayebi, Porous Magnesium-Based Scaffolds for Tissue Engineering, Mater. Sci. Eng. C, 2017, 71, p 1253–1266. https://doi.org/10.1016/j.msec.2016.11.027

    Article  CAS  Google Scholar 

  2. A. Vahidgolpayegani, C. Wen, P. Hodgson, and Y. Li, Production Methods and Characterization of Porous Mg and Mg Alloys for Biomedical Applications, Met. Foam Bone, 2017, https://doi.org/10.1016/b978-0-08-101289-5.00002-0

    Article  Google Scholar 

  3. J. Trinidad, I. Marco, G. Arruebarrena, J. Wendt, D. Letzig, E. Sáenz de Argandoña, and R. Goodall, Processing of Magnesium Porous Structures by Infiltration Casting for Biomedical Applications, Adv. Eng. Mater., 2014, 16(2), p 241–247. https://doi.org/10.1002/adem.201300236

    Article  CAS  Google Scholar 

  4. X.-Z. Yue and B.-Y. Hur, Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams, J. Mater. Res., 2012, https://doi.org/10.3740/mrsk.2012.22.6.309

    Article  Google Scholar 

  5. X.-Z. Yue, K. Kitazono, X.-J. Yue, and B.-Y. Hur, Effect of Fluidity on the Manufacturing of Open Cell Magnesium Alloy Foams, J. Magnes. Alloys, 2016, 4(1), p 1–7. https://doi.org/10.1016/j.jma.2015.11.007

    Article  CAS  Google Scholar 

  6. M. Balart, J. Patel, and Z. Fan, Melt Protection of Mg-Al Based Alloys, Metals, 2016, 6(6), p 131. https://doi.org/10.3390/met6060131

    Article  CAS  Google Scholar 

  7. N. Hort, B. Wiese, H. Dieringa, and K.U. Kainer, Magnesium Melt Protection, Mater. Sci. Forum, 2015, 828–829, p 78–81

    Article  Google Scholar 

  8. H. Jafari, M.H. Idris, A. Ourdjini, S. Farahany, and M.R.A. Kadir, Characterization of AZ91D Granules Covered with a Flux During In-Situ Melting, Part. Part. Syst. Charact., 2012, 29(4), p 263–272. https://doi.org/10.1002/ppsc.201100044

    Article  CAS  Google Scholar 

  9. H. Jafari, M.H. Idris, A. Ourdjini, M.R.A. Kadir, H. Idris, A. Ourdjini, M. Rafiq, A. Kadir, and M.H. Idris, Influence of Flux on Melting Characteristics and Surface Quality of In-Situ Melting AZ91D Influence of Flux on Melting Characteristics and Surface Quality of In-Situ Melting AZ91D, Mater. Manuf. Process., 2013, 28(2), p 148–153. https://doi.org/10.1080/10426914.2012.746787

    Article  CAS  Google Scholar 

  10. S. Dutta, K. Bavya Devi, and M. Roy, Processing and Degradation Behavior of Porous Magnesium Scaffold for Biomedical Applications, Adv. Powder Technol., 2017, 28(12), p 3204–3212. https://doi.org/10.1016/j.apt.2017.09.024

    Article  CAS  Google Scholar 

  11. Y. Yan, Y. Kang, D. Li, K. Yu, T. Xiao, Q. Wang, Y. Deng, H. Fang, D. Jiang, and Y. Zhang, Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering, J. Mater. Eng. Perform., 2018, 27(3), p 970–984. https://doi.org/10.1007/s11665-018-3189-x

    Article  CAS  Google Scholar 

  12. S. Lun Sin, D. Dubé, and R. Tremblay, Interfacial Reactions Between AZ91D Magnesium Alloy and Plaster Mould Material during Investment Casting, Mater. Sci. Technol., 2006, https://doi.org/10.1179/174328406x148804

    Article  Google Scholar 

  13. S. Julmi, A.-K. Krüger, A.-C. Waselau, A. Meyer-Lindenberg, P. Wriggers, C. Klose, and H.J. Maier, Processing and Coating of Open-Pored Absorbable Magnesium-Based Bone Implants, Mater. Sci. Eng. C, 2019, 98, p 1073–1086. https://doi.org/10.1016/j.msec.2018.12.125

    Article  CAS  Google Scholar 

  14. S.P. Cashion, N.J. Ricketts, and P.C. Hayes, The Mechanism of Protection of Molten Magnesium by Cover Gas Mixtures Containing Sulphur Hexafluoride, J. Light Met., 2002, 2(1), p 43–47. https://doi.org/10.1016/s1471-5317(02)00012-3

    Article  Google Scholar 

  15. M. Maiss and I. Levin, Global Increase of SF 6 Observed in the Atmosphere, Geophys. Res. Lett., 1994, 21(7), p 569–572. https://doi.org/10.1029/94GL00179

    Article  CAS  Google Scholar 

  16. S. Singh, P. Vashisth, A. Shrivastav, and N. Bhatnagar, Synthesis and Characterization of a Novel Open Cellular Mg-Based Scaffold for Tissue Engineering Application, J. Mech. Behav. Biomed. Mater., 2019, 94, p 54–62. https://doi.org/10.1016/j.jmbbm.2019.02.010

    Article  CAS  Google Scholar 

  17. H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Automotive Applications, Springer, Berlin, 2006

    Google Scholar 

  18. S. Lun Sin, A. Elsayed, and C. Ravindran, Inclusions in Magnesium and Its Alloys: A Review, Int. Mater. Rev., 2013, 58(7), p 419–436. https://doi.org/10.1179/1743280413y.0000000017

    Article  CAS  Google Scholar 

  19. H.E. Friedrich and B.L. Mordike, Melting, Alloying and Refining, Magnes. Technol., 2006, https://doi.org/10.1007/3-540-30812-1_4

    Article  Google Scholar 

  20. E.F. Emley, Fluxes and the Mechanism of Flux Action, Principles of Magnesium Technology, 1st ed., Pergamon Press, Oxford, 1966, p 94–125

  21. S. Banerjee, R. Yang, C.E. Courchene, and T.E. Conners, Scanning Electron Microscopy Measurements of the Surface Roughness of Paper, Ind. Eng. Chem. Res., 2009, 48(9), p 4322–4325. https://doi.org/10.1021/ie900029v

    Article  CAS  Google Scholar 

  22. U.-H. Baek, B.-D. Lee, K.-W. Lee, J.-Y. Yoon, G.-S. Han, and J.-W. Han, Removal of Ca from Magnesium Melt by Flux Reening, Mater. Trans., 2016, https://doi.org/10.2320/matertrans.M2015426

    Article  Google Scholar 

  23. B. Dehghan-Manshadi, H. Mahmudi, A. Abedian, and R. Mahmudi, A Novel Method for Materials Selection in Mechanical Design: Combination of Non-Linear Normalization and a Modified Digital Logic Method, Mater. Des., 2007, 28(1), p 8–15. https://doi.org/10.1016/j.matdes.2005.06.023

    Article  Google Scholar 

  24. C. Colosi, M. Costantini, A. Barbetta, R. Pecci, R. Bedini, and M. Dentini, Morphological Comparison of PVA Scaffolds Obtained by Gas Foaming and Microfluidic Foaming Techniques, Langmuir, 2013, 29(1), p 82–91. https://doi.org/10.1021/la303788z

    Article  CAS  Google Scholar 

  25. N. Babcsan, S. Beke, G. Szamel, T. Borzsonyi, B. Szabo, R. Mokso, C. Kadar, and J.B. Kiss, Characterisation of ALUHAB Aluminium Foams with Micro-CT, Procedia Mater. Sci., 2014, 4, p 69–74. https://doi.org/10.1016/j.mspro.2014.07.598

    Article  CAS  Google Scholar 

  26. X.-N. Gu, S.-S. Li, X.-M. Li, and Y.-B. Fan, Magnesium Based Degradable Biomaterials: A Review, Front. Mater. Sci., 2014, 8(3), p 200–218. https://doi.org/10.1007/s11706-014-0253-9

    Article  Google Scholar 

  27. Y. Ding, C. Wen, P. Hodgson, and Y. Li, Effects of Alloying Elements on the Corrosion Behavior and Biocompatibility of Biodegradable Magnesium Alloys: A Review, J. Mater. Chem. B, 2014, 2(14), p 1912–1933. https://doi.org/10.1039/C3TB21746A

    Article  CAS  Google Scholar 

  28. N. Li and Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, J. Mater. Sci. Technol., 2013, 29(6), p 489–502. https://doi.org/10.1016/j.jmst.2013.02.005

    Article  CAS  Google Scholar 

  29. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable Biomaterials Based on Magnesium Corrosion, Curr. Opin. Solid State Mater. Sci., 2008, 12(5–6), p 63–72. https://doi.org/10.1016/j.cossms.2009.04.001

    Article  CAS  Google Scholar 

  30. S. Candan and E. Candan, Comparative Study on Corrosion Behaviors of Mg-Al-Zn Alloys, Trans. Nonferrous Met. Soc. China, 2018, 28(4), p 642–650. https://doi.org/10.1016/S1003-6326(18)64696-5

    Article  CAS  Google Scholar 

  31. R. Radha and D. Sreekanth, Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications—A Review, J. Magnes. Alloys, 2017, 5(3), p 286–312. https://doi.org/10.1016/j.jma.2017.08.003

    Article  CAS  Google Scholar 

  32. S.K. Kim, J.-K. Lee, Y.-O. Yoon, and H.-H. Jo, Development of AZ31 Mg Alloy Wrought Process Route without Protective Gas, J. Mater. Process. Technol., 2007, https://doi.org/10.1016/j.jmatprotec.2006.11.172

    Article  Google Scholar 

  33. C.D. Yim, B.S. You, R.S. Jang, and S.G. Lim, Effects of Melt Temperature and Mold Preheating Temperature on the Fluidity of Ca Containing AZ31 Alloys, J. Mater. Sci., 2006, 41(8), p 2347–2350. https://doi.org/10.1007/s10853-006-4498-2

    Article  CAS  Google Scholar 

  34. H. Singh Tathgar and T.A. Engh, Impurities in Magnesium and Magnesium Based Alloys and Their Removal, n.d., https://onlinelibrary.wiley.com/doi/pdf/10.1002/3527607552.ch119. Accessed 17 July 2019.

  35. H. Jafari, M.H. Idris, A. Ourdjini, and S. Farahany, Oxidation and Melting Characterizations of AZ91D Granules during In-Situ Melting, n.d. www.scientific.net/AMR.311-313.631.

  36. Z. Weimin, S. Yong, L. Haipeng, and L. Chunyong, The Effects of Some Elements on the Igniting Temperature of Magnesium Alloys, Mater. Sci. Eng. B, 2006, 127(2), p 105–107

    Article  Google Scholar 

  37. M.J. Balart and Z. Fan, Surface Oxidation of Molten AZ91D Magnesium Alloy in Air, Int. J. Cast Met. Res., 2014, 27(3), p 167–175. https://doi.org/10.1179/1743133613y.0000000093

    Article  CAS  Google Scholar 

  38. H. Men and Z. Fan, Transition of Amorphous to Crystalline Oxide Film in Initial Oxide Overgrowth on Liquid Metals, Mater. Sci. Technol., 2011, 27(6), p 1033–1039. https://doi.org/10.1179/026708310x520547

    Article  CAS  Google Scholar 

  39. B.-S. You, W.-W. Park, and I.-S. Chung, The Effect of Calcium Additions on the Oxidation Behavior in Magnesium Alloys, Scr. Mater., 2000, 42(11), p 1089–1094. https://doi.org/10.1016/S1359-6462(00)00344-4

    Article  CAS  Google Scholar 

  40. M.J. Balart and Z. Fan, Surface Oxidation of Molten AZ31, AM60B and AJ62 Magnesium Alloys in Air, Int. J. Cast Met. Res., 2014, 27(5), p 301–311. https://doi.org/10.1179/1743133614y.0000000115

    Article  CAS  Google Scholar 

  41. H. Kai, L. Jianguo, Z. Li, T. Zhen, Y. Jiangying, L. Ping, and L. Feng, Effect of Magnesium Doping on the Light-Induced Hydrophilicity of ZnO Thin Films, J. Semicond., 2012, https://doi.org/10.1088/1674-4926/33/5/053003

    Article  Google Scholar 

  42. A.A. Leonov, V.A. Duyunova, Z.P. Uridiya, and N.V. Trofimov, New Universal Flaky Flux for Cast Magnesium Alloys, Russ. Metall., 2019, 2019(3), p 268–272. https://doi.org/10.1134/s003602951903008x

    Article  Google Scholar 

  43. V. Karageorgiou and D. Kaplan, Porosity of 3D Biomaterial Scaffolds and Osteogenesis, Biomaterials, 2005, 26(27), p 5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  CAS  Google Scholar 

  44. M. Chatzinikolaidou, S. Rekstyte, P. Danilevicius, C. Pontikoglou, H. Papadaki, M. Farsari, and M. Vamvakaki, Adhesion and Growth of Human Bone Marrow Mesenchymal Stem Cells on Precise-Geometry 3D Organic-Inorganic Composite Scaffolds for Bone Repair, Mater. Sci. Eng. C, 2015, 48, p 301–309. https://doi.org/10.1016/j.msec.2014.12.007

    Article  CAS  Google Scholar 

  45. D. Logeart-Avramoglou, F. Anagnostou, R. Bizios, and H. Petite, Engineering Bone: Challenges and Obstacles, J. Cell. Mol. Med., 2005, 9(1), p 72–84

    Article  CAS  Google Scholar 

  46. G. Jia, Y. Hou, C. Chen, J. Niu, H. Zhang, H. Huang, M. Xiong, and G. Yuan, Precise Fabrication of Open Porous Mg Scaffolds Using NaCl Templates: Relationship between Space Holder Particles, Pore Characteristics and Mechanical Behavior, Mater. Des., 2018, 140, p 106–113. https://doi.org/10.1016/j.matdes.2017.11.064

    Article  CAS  Google Scholar 

  47. E.M. Elizondo Luna, F. Barari, R. Woolley, and R. Goodall, Casting Protocols for the Production of Open Cell Aluminum Foams by the Replication Technique and the Effect on Porosity, J. Vis. Exp., 2014, https://doi.org/10.3791/52268

    Article  Google Scholar 

  48. J.O. Osorio-Hernández, M.A. Suarez, R. Goodall, G.A. Lara-Rodriguez, I. Alfonso, and I.A. Figueroa, Manufacturing of Open-Cell Mg Foams by Replication Process and Mechanical Properties, Mater. Des., 2014, 64, p 136–141. https://doi.org/10.1016/j.matdes.2014.07.015

    Article  CAS  Google Scholar 

  49. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater. Sci., 2009, 54(3), p 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  50. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1999

    Google Scholar 

  51. L.J. Gibson, Mechanical Behavior of Metallic Foams. Annu. Rev. Mater. Sci., 2000, 30(1), p 191–227

    Article  CAS  Google Scholar 

  52. A. Byakova, S. Gnyloskurenko and T. Nakamura, The Role of Foaming Agent and Processing Route in the Mechanical Performance of Fabricated Aluminum Foams. Metals, 2012, 2(2), p 95–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) of the Colombian Government [Contract No. 392-2016]. VP, JR, and PF thank the University of Illinois at Urbana-Champaign for financial support. Characterization experiments were carried out in the Frederick Seitz Materials Research Laboratory Central Facilities, at the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Contributions

V.P., A.S., and P.F. performed the experimental part. V.P., A.S., and J.P.A. established and executed the experiments at UIUC and manuscript. V.P., J.R., P.F., and J.P.A. wrote the manuscript. All authors approved the manuscript.

Corresponding authors

Correspondence to Viviana M. Posada or Patricia Fernández-Morales.

Ethics declarations

Conflict of interest

Authors have no conflicts of interest or financial disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posada, V.M., Ramírez, J., Allain, J.P. et al. Synthesis and Properties of Mg-Based Foams by Infiltration Casting Without Protective Cover Gas. J. of Materi Eng and Perform 29, 681–690 (2020). https://doi.org/10.1007/s11665-020-04566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04566-7

Keywords

Navigation