Skip to main content
Log in

Investigation on the Effect of Stirring Process Parameters on the Dispersion of SiC Particles Inside Melting Crucible

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Stirring based liquid metal processing is the widely explored process by researchers for the production of metal matrix composites (MMCs). The dispersion of reinforcement particles is the major challenge in the process. The stirring process parameters govern the dispersion of reinforcement particles in MMCs. The important stirring process parameters are stirring speed, stirrer geometry, stirrer position, and stirring time. In the literature, research works are reported, where the effect of such parameters on the dispersion of particles was investigated either by analyzing flow field using computational methods (assuming constant fluid properties) or by sectioning the casted samples. In cast condition, the dispersion of particles is also influenced by the solidification phenomena. The aim of the present work is to investigate the significance and the effect of stirrer geometry, stirrer position and stirring speed on the dispersion of reinforcement particles inside melting crucible, during the stirring. Aluminium alloy LM25 was used as the matrix material and silicon carbide (SiC) particles having mean size 37.58 microns (d50 value) were used as the reinforcement phases. Samples of the composite slurry during the stirring process were dragged using a quartz tube at three levels inside crucible and microstructure analysis was carried out. Number density (ND) and inter particle distance were evaluated for parameter combinations. The uniform dispersion of SiC particles was observed at 45° stirrer blade angle, 400 rpm stirring speed and 40 mm stirrer position. And, significance order of individual parameter was observed as stirring speed < stirrer position < stirrer blade angle.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.V. Prasad, R. Asthana, Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17(3), 445–453 (2004). https://doi.org/10.1023/B:TRIL.0000044492.91991.f3

    Article  CAS  Google Scholar 

  2. M. Ghahremanian, B. Niroumand, M. Panjepour, Production of Al–Si–SiCp cast composites by injection of low-energy ball-milled Al–SiCp powder into the melt. Met. Mater. Int. 18(1), 149–156 (2012). https://doi.org/10.1016/j.compositesb.2018.10.074

    Article  CAS  Google Scholar 

  3. S. Ghosh, P. Sahoo, G. Sutradhar, Wear behaviour of Al–SiCp metal matrix composites and optimization using taguchi method and grey relational analysis. J. Min. Mater. Charact. Eng. 20(11), 1085–1094 (2012)

    Google Scholar 

  4. G.A. Gegel, D.J. Weiss, Enabling technology for the design of short-fiber reinforced aluminum MMC components. Int. J. Met. Cast. 1(1), 57–67 (2007). https://doi.org/10.1007/BF03355418

    Article  CAS  Google Scholar 

  5. J.M. Lee, C.G. Lee, S.B. Kang, A. Kamio, A new technology for the production of aluminum matrix composites by the plasma synthesis method. Met. Mater. 6(4), 389–394 (2000). https://doi.org/10.1007/BF03028087

    Article  CAS  Google Scholar 

  6. S. Singh, I. Singh, A. Dvivedi, Design and development of novel cost effective casting route for production of metal matrix composites (MMCs). Int. J. Cast. Met. Res. 30(6), 356–364 (2017). https://doi.org/10.1080/13640461.2017.1323605

    Article  Google Scholar 

  7. J. Hashim, L. Looney, M.S. Hashmi, Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92, 1–7 (1999). https://doi.org/10.1016/S0924-0136(99)00118-1

    Article  Google Scholar 

  8. S. Soltani, R.A. Khosroshahi, R.T. Mousavian, Z.Y. Jiang, A.F. Boostani, D. Brabazon, Stir casting process for manufacture of Al–SiC composites. Rare Met. 36(7), 581–590 (2017). https://doi.org/10.1007/s12598-015-0565-7

    Article  CAS  Google Scholar 

  9. B. Kumar, J.V. Menghani, Aluminium-based metal matrix composites by stir casting: a literature review. Int. J. Mat. Eng. Innov. 7(1), 1–4 (2016). https://doi.org/10.1504/IJMATEI.2016.077310

    Article  Google Scholar 

  10. J. Hashim, The production of cast metal matrix composite by a modified stir casting method. J. Teknol. 35(1), 9–20 (2001). https://doi.org/10.11113/jt.v35.588

    Article  Google Scholar 

  11. M.K. Sahu, R.K. Sahu, Fabrication of aluminum matrix composites by stir casting technique and stirring process parameters optimization. In: Advanced Casting Technologies (Intech Open, 2018). https://doi.org/10.5772/intechopen.73485

  12. J.J. Moses, I. Dinaharan, S.J. Sekhar, Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting. Trans. Nonferrous Met. Soc. China 26(6), 1498–1511 (2016). https://doi.org/10.1016/S1003-6326(16)64256-5

    Article  CAS  Google Scholar 

  13. H. Su, W. Gao, H. Zhang, H. Liu, J. Lu, Z. Lu, Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. J. Manuf. Sci. Eng. 132(6), 061007 (2010). https://doi.org/10.1115/1.4002851

    Article  Google Scholar 

  14. S.B. Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 171(2), 268–273 (2006). https://doi.org/10.1016/j.jmatprotec.2005.06.071

    Article  CAS  Google Scholar 

  15. P. Rohatgi, R. Asthana, The solidification of metal-matrix particulate composites. JOM 43(5), 35–41 (1991). https://doi.org/10.1007/BF03220566

    Article  CAS  Google Scholar 

  16. X.H. Chen, H. Yan, Solid–liquid interface dynamics during solidification of Al 7075–Al2O3np based metal matrix composites. Mater. Des. 94, 148–158 (2016). https://doi.org/10.1016/j.matdes.2016.01.042

    Article  CAS  Google Scholar 

  17. J.B. Ferguson, G. Kaptay, B.F. Schultz, P.K. Rohatgi, K. Cho, C.S. Kim, Brownin motion effects on prticle pushing and engulfment during solidifiction in metal-matrix composites. Metall. Mater. Trans. A. 45(10), 4635–4645 (2014). https://doi.org/10.1007/s11661-014-2379-x

    Article  CAS  Google Scholar 

  18. E.M. Agaliotis, C.E. Schvezov, M.R. Rosenberger, A.E. Ares, A numerical model study of the effect of interface shape on particle pushing. J. Cryst. Growth 354(1), 49–56 (2012). https://doi.org/10.1016/j.jcrysgro.2012.05.032

    Article  CAS  Google Scholar 

  19. S. Karagadde, S. Sundarraj, P. Dutta, A model for growth and engulfment of gas microporosity during aluminum alloy solidification process. Comput. Mater. Sci. 65, 383–394 (2012). https://doi.org/10.1016/j.commatsci.2012.07.045

    Article  CAS  Google Scholar 

  20. P.K. Rohatgi, K. Pasciak, C.S. Narendranath, S. Ray, A. Sachdev, Evolution of microstructure and local thermal conditions during directional solidification of LM25-SiC particle composites. J. Mater. Sci. 29(20), 5357–5366 (1994). https://doi.org/10.1007/BF01171548

    Article  CAS  Google Scholar 

  21. P.K. Rohatgi, R. Asthana, S. Das, Solidification, structures, and properties of cast metal-ceramic particle composites. Int. Met. Rev. 31(1), 115–139 (1986). https://doi.org/10.1179/imtr.1986.31.1.115

    Article  CAS  Google Scholar 

  22. K.V. Prasad, K.R. Jayadevan, Simulation of stirring in stir casting. Procedia Technol. 24, 356–363 (2016). https://doi.org/10.1016/j.protcy.2016.05.048

    Article  Google Scholar 

  23. S. Naher, D. Brabazon, L. Looney, Computational and experimental analysis of particulate distribution during Al–SiC MMC fabrication. Compos Part A 38(3), 719–729 (2007). https://doi.org/10.1016/j.compositesa.2006.09.009

    Article  CAS  Google Scholar 

  24. S. Naher, D. Brabazon, L. Looney, Simulation of the stir casting process. J. Mater. Process. Technol. 143, 567–571 (2003). https://doi.org/10.1016/S0924-0136(03)00368-6

    Article  CAS  Google Scholar 

  25. S. Amirkhanlou, B. Niroumand, Microstructure and mechanical properties of Al356/SiCp cast composites fabricated by a novel technique. J. Mater. Eng. Perform. 22(1), 85–93 (2013). https://doi.org/10.1007/s11665-012-0223-2

    Article  CAS  Google Scholar 

  26. A.M. Gokhale, Quantitative characterization and representation of global microstructural geometry. ASM Handbook, Volume 9: Metallography and Microstructures (2004), pp. 428–447. https://doi.org/10.1361/asmhba0003759

  27. J. Hashim, L. Looney, M.S. Hashmi, Particle distribution in cast metal matrix composites—part II. J. Mater. Process. Technol. 123(2), 258–263 (2002). https://doi.org/10.1016/S0924-0136(02)00099-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayur P. Sutaria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, V.R., Sutaria, M.P. Investigation on the Effect of Stirring Process Parameters on the Dispersion of SiC Particles Inside Melting Crucible. Met. Mater. Int. 27, 2989–3002 (2021). https://doi.org/10.1007/s12540-020-00612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00612-0

Keywords

Navigation