Skip to main content

Advertisement

Log in

Skin permeation and thermodynamic features of curcumin-loaded liposomes

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This work describes the development of liposomes encapsulating curcumin (CURC) aiming to provide insights on the influence of CURC on the thermodynamic and skin permeation/penetration features of the vesicles. CURC-loaded liposomes were prepared by hydration of lipid film, in the 0.1–15% CURC:DPPC w/w ratio range. The obtained formulations were characterized for their size distribution, zeta potential and vesicle deformability, along with their thermodynamic properties and ex vivo skin penetration/permeation ability. Liposome size was 110–130 nm for all formulations, with fairly narrow size distribution (polydispersity index was ≤0.20) and a zeta potential mildly decreasing with CURC loading. DSC outcomes indicated that CURC interferes with the packing of DPPC acyl chains in liposome bilayer when CURC percentage was at least 10%, leading to a more fluid state than blank and low-payload vesicles. Consistently, the deformability index of liposomes with 15% CURC:DPPC was strongly increased compared to other formulations. This is congruent with ex vivo skin penetration/permeation results, which showed how more deformable liposomes showed an improved deposition in the epidermis, which acts as a reservoir for the active molecule. Altogether, results hint at a possible application of high payload liposomes for improved topical dermal accumulations of actives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75:787–809.

    CAS  Google Scholar 

  2. Caon T, Mazzarino L, Simoes CM, Senna EL, Silva MA. Lipid- and polymer-based nanostructures for cutaneous delivery of curcumin. AAPS PharmSciTech. 2017;18:920–5.

    CAS  Google Scholar 

  3. Ramsewak RS, DeWitt DL, Nair MG. Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine. 2000;7:303–8.

    CAS  Google Scholar 

  4. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57:1–7.

    CAS  Google Scholar 

  5. Asher GN, Spelman K. Clinical utility of curcumin extract. Altern Ther Health Med. 2013;19:20–2.

    Google Scholar 

  6. Bhattacharyya S, Mandal D, Saha B, Sen GS, Das T, Sa G. Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. J Biol Chem. 2007;282:15954–64.

    CAS  Google Scholar 

  7. Chandran B, Goel A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res. 2012;26:1719–25.

    CAS  Google Scholar 

  8. Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol. 2007;27:19–35.

    CAS  Google Scholar 

  9. DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012;11:79.

    CAS  Google Scholar 

  10. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18.

    CAS  Google Scholar 

  11. Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014;58:516–27.

    CAS  Google Scholar 

  12. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem. 2017;60:1620–37.

    CAS  Google Scholar 

  13. Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol. 1978;43:86–92.

    CAS  Google Scholar 

  14. Sun L, Liu Z, Lin Z, Cun D, Tong HH, Yan R et al. Comparison of normal versus imiquimod-induced psoriatic skin in mice for penetration of drugs and nanoparticles. Int J Nanomed. 2018;13:5625–35.

    CAS  Google Scholar 

  15. Asada K, Ohara T, Muroyama K, Yamamoto Y, Murosaki S. Effects of hot water extract of Curcuma longa on human epidermal keratinocytes in vitro and skin conditions in healthy participants: a randomized, double-blind, placebo-controlled trial. J Cosmet Dermatol. 2019;18:1866–74.

    Google Scholar 

  16. Peram MR, Jalalpure S, Kumbar V, Patil S, Joshi S, Bhat K et al. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation. J Liposome Res. 2019;29:291–311.

    CAS  Google Scholar 

  17. Nabavi SM, Russo GL, Tedesco I, Daglia M, Orhan IE, Nabavi SF et al. Curcumin and Melanoma: from chemistry to medicine. Nutr Cancer. 2018;70:164–75.

    CAS  Google Scholar 

  18. Raja MA, Zeenat S, Arif M, Liu C. Self-assembled nanoparticles based on amphiphilic chitosan derivative and arginine for oral curcumin delivery. Int J Nanomed. 2016;11:4397–412.

    CAS  Google Scholar 

  19. Patel NA, Patel NJ, Patel RP. Formulation and evaluation of curcumin gel for topical application. Pharm Dev Technol. 2009;14:80–9.

    CAS  Google Scholar 

  20. Gupta NK, Dixit VK. Development and evaluation of vesicular system for curcumin delivery. Arch Dermatol Res. 2011;303:89–101.

    CAS  Google Scholar 

  21. Lauterbach A, Muller-Goymann CC. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm. 2015;97:152–63.

    CAS  Google Scholar 

  22. Muzzalupo R, Tavano L, Cassano R, Trombino S, Ferrarelli T, Picci N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur J Pharm Biopharm. 2011;79:28–35.

    CAS  Google Scholar 

  23. Sinico C, Fadda AM. Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv. 2009;6:813–25.

    CAS  Google Scholar 

  24. Benson HA. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv. 2005;2:23–33.

    CAS  Google Scholar 

  25. Subongkot T, Ngawhirunpat T. Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes. Int J Nanomed. 2015;10:4581–92.

    CAS  Google Scholar 

  26. Simao AMS, Bolean M, Cury TAC, Stabeli RG, Itri R, Ciancaglini P. Liposomal systems as carriers for bioactive compounds. Biophys Rev. 2015;7:391–7.

    CAS  Google Scholar 

  27. Campani V, Marchese D, Pitaro MT, Pitaro M, Grieco P, De RG. Development of a liposome-based formulation for vitamin K1 nebulization on the skin. Int J Nanomed. 2014;9:1823–32.

    Google Scholar 

  28. Stewart JC. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104:10–4.

    CAS  Google Scholar 

  29. Serri C, Argiro M, Piras L, Mita DG, Saija A, Mita L et al. Nano-precipitated curcumin loaded particles: effect of carrier size and drug complexation with (2-hydroxypropyl)-beta-cyclodextrin on their biological performances. Int J Pharm. 2017;520:21–8.

    CAS  Google Scholar 

  30. Manca ML, Zaru M, Manconi M, Lai F, Valenti D, Sinico C et al. Glycerosomes: a new tool for effective dermal and transdermal drug delivery. Int J Pharm. 2013;455:66–74.

    CAS  Google Scholar 

  31. Mura S, Manconi M, Sinico C, Valenti D, Fadda AM. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int J Pharm. 2009;380:72–9.

    CAS  Google Scholar 

  32. Gillet A, Lecomte F, Hubert P, Ducat E, Evrard B, Piel G. Skin penetration behaviour of liposomes as a function of their composition. Eur J Pharm Biopharm. 2011;79:43–53.

    CAS  Google Scholar 

  33. Mayol L, Serri C, Menale C, Crispi S, Piccolo MT, Mita L et al. Curcumin loaded PLGA-poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells. Eur J Pharm Biopharm. 2015;93:37–45.

    CAS  Google Scholar 

  34. Campani V, Biondi M, Mayol L, Cilurzo F, Franze S, Pitaro M et al. Nanocarriers to enhance the accumulation of vitamin K1 into the skin. Pharm Res. 2016;33:893–908.

    CAS  Google Scholar 

  35. Campani V, Biondi M, Mayol L, Cilurzo F, Pitaro M, De RG. Development of nanoemulsions for topical delivery of vitamin K1. Int J Pharm. 2016;511:170–7.

    CAS  Google Scholar 

  36. Manca ML, Castangia I, Zaru M, Nacher A, Valenti D, Fernandez-Busquets X et al. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials. 2015;71:100–9.

    CAS  Google Scholar 

  37. Castangia I, Nacher A, Caddeo C, Valenti D, Fadda AM, Diez-Sales O et al. Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater. 2014;10:1292–1300.

    CAS  Google Scholar 

  38. Barcelo F, Prades J, Encinar JA, Funari SS, Vogler O, Gonzalez-Ros JM et al. Interaction of the C-terminal region of the Ggamma protein with model membranes. Biophys J. 2007;93:2530–41.

    CAS  Google Scholar 

  39. Wu RG, Dai JD, Wu FG, Zhang XH, Li WH, Wang YR. Competitive molecular interaction among paeonol-loaded liposomes: differential scanning calorimetry and synchrotron X-ray diffraction studies. Int J Pharm. 2012;438:91–7.

    CAS  Google Scholar 

  40. Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm. 2007;332:1–16.

    CAS  Google Scholar 

  41. Pierre MB, Dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res. 2011;303:607–21.

    CAS  Google Scholar 

  42. Ogiso T, Niinaka N, Iwaki M. Mechanism for enhancement effect of lipid disperse system on percutaneous absorption. J Pharm Sci. 1996;85:57–64.

    CAS  Google Scholar 

  43. Yokomizo Y, Sagitani H. The effects of phospholipids on the percutaneous penetration of indomethacin through the dorsal skin of guinea pig in vitro. 2. The effects of the hydrophobic group in phospholipids and a comparison with general enhancers. J Control Release. 1996;42:37–46.

    CAS  Google Scholar 

  44. Vollono L, Falconi M, Gaziano R, Iacovelli F, Dika E, Terracciano C, Bianchi L, Campione E. Potential of curcumin in skin disorders. Nutrients. 2019;11: E2169.

  45. Heenatigala Palliyage G, Singh S, Ashby CR Jr, Tiwari AK, Chauhan H. Pharmaceutical topical delivery of poorly soluble polyphenols: potential role in prevention and treatment of melanoma. AAPS PharmSciTech. 2019;20:250.

    Google Scholar 

  46. Hussain Z, Thu HE, Ng SF, Khan S, Katas H. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: a review of new trends and state-of-the-art. Colloids Surf B Biointerfaces. 2017;150:223–41.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Biondi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campani, V., Scotti, L., Silvestri, T. et al. Skin permeation and thermodynamic features of curcumin-loaded liposomes. J Mater Sci: Mater Med 31, 18 (2020). https://doi.org/10.1007/s10856-019-6351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6351-6

Navigation