Skip to main content
Log in

Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A tetrahedral polyelectrolyte brush in the presence of trivalent counterions is researched under the condition of good solution by means of molecular dynamics simulations. Grafting density and charge fraction are varied to generate a series of surface patterns. Lateral microphase separation happens and various interesting pinned patches appear at appropriate charge fraction and grafting density. Through a careful analysis on the brush thickness, the pair correlation functions, the distributions of net charge, and the four states of trivalent counterions in the brush, we find that the ordered surface patterns and special properties are induced by the pure electrostatic correlation effect of trivalent ions even in the good solvent. Furthermore, the dependences of electrostatic correlation on the charge fraction of tethered chains are evaluated for fixed grafting density. Also, our results can serve as a guide for precise control over the stimuli-responsive materials rational and self-assembly of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rühe, J.; Ballauff, M.; Biesalski, M.; Dziezok, P.; Gröhn, F.; Johannsmann, D.; Houbenov, N.; Hugenberg, N.; Konradi, R.; Minko, S.; Motornov, M.; Netz, R. R.; Schmidt, M.; Seidel, C.; Stamm, M.; Stephan, T.; Usov, D.; Zhang, H. Polyelectrolyte brushes. Adv. Polym. Sci.2004, 165, 79–150.

    Article  Google Scholar 

  2. Hao, Q. H.; Zheng, Z.; Xia, G.; Tan, H. G. Brownian dynamics simulations of rigid polyelectrolyte chains grafting to spherical colloid. Chinese J. Polym. Sci.2018, 36, 791–798.

    Article  CAS  Google Scholar 

  3. Jaquet, B.; Wei, D.; Reck, B.; Reinhold, F.; Zhang, X. Y.; Wu, H.; Morbidelli, M. Stabilization of polymer colloid dispersions with pH-sensitive poly-acrylic acid brushes. Colloid Polym. Sci.2013, 291, 1659–1667.

    Article  CAS  Google Scholar 

  4. Zhang, X.; Yang, P. P.; Dai, Y. L.; Ma, P. A.; Li, X. J.; Cheng, Z. Y.; Hou, Z. Y.; Kang, X. J.; Li, C. X.; Lin, J. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater.2013, 23, 4067–4078.

    Article  CAS  Google Scholar 

  5. Kreer, T. Polymer-brush lubrication: A review of recent theoretical advances. Soft Matter2016, 12, 3479–3501.

    Article  CAS  Google Scholar 

  6. ShamsiJazeyi, H.; Miller, C. A.; Wong, M. S.; Tour, J. M.; Verduzco, R. Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci.2014, 134, 40576.

  7. Zhulina, E.; Singh, C.; Balazs, A. C. Behavior of tethered polyelectrolytes in poor solvents. J. Chem. Phy s.1998, 108, 1175–1183.

    Article  CAS  Google Scholar 

  8. Tagliazucchi, M.; Cruz, M. O. D. L.; Szleifer, I. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proc. Natl. Acad. Sci.2010, 107, 5300–5305.

    Article  CAS  Google Scholar 

  9. Tagliazucchi, M.; Calvo, E. J.; Szleifer, I. Molecular modeling of responsive polymer films. AIChE J.2010, 56, 1952–1959.

    CAS  Google Scholar 

  10. Brettmann, B.; Pincus, P.; Tirrell, M. Lateral structure formation in polyelectrolyte brushes induced by multivalent ions. Macromolecules2017, 50, 1225–1235.

    Article  CAS  Google Scholar 

  11. Günther, J. U.; Ahrens, H.; Fö rster, S.; Helm, C. A. Bundle formation in polyelectrolyte brushes. Phys. Rev. Lett.2008, 101, 258303.

  12. Yamada, T.; Kokado, K.; Higaki, Y.; Takahara, A.; Sada, K. Preparation and morphology variation of lipophilic polyelectrolyte brush functioning in nonpolar solvents. Chem. Lett.2014, 43, 1300–1302.

    Article  CAS  Google Scholar 

  13. Bracha, D.; Bar-Ziv, R. H. Dendritic and nanowire assemblies of condensed DNA polymer brushes. J. Am. Chem. Soc.2014, 136, 4945–4953.

    Article  CAS  Google Scholar 

  14. Yu, J.; Jackson, N. E.; Xu, X.; Brettmann, B. K.; Ruths, M.; Pablo, J. J. D.; Tirrell, M. Multivalent ions induce lateral structural inhomogeneities in polyelectrolyte brushes. Sci. Adv.2017, 3, 1497.

    Article  Google Scholar 

  15. Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: Molecular dynamics simulations and scaling analysis. La ngmuir2009, 25, 13158–13168.

    CAS  Google Scholar 

  16. He, G. L.; Merlitz, H.; Sommer, J. U. Molecular dynamics simulations of polyelectrolyte brushes under poor solvent conditions: Origins of bundle formation. J. Chem. Phys.2014, 140, 104911.

    Article  Google Scholar 

  17. Jackson, N. E.; Brettmann, B. K.; Vishwanath, V.; Tirrell, M.; Pablo, J. J. D. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes.. ACS Macro Lett.2017, 6, 155–160.

    Article  CAS  Google Scholar 

  18. Sandberg, D. J.; Carrillo, J. M. Y.; Dobrynin A. V. Molecular dynamics simulations of polyelectrolyte brushes: From single chains to bundles of chains. Langmuir2007, 23, 12716–12728.

    Article  CAS  Google Scholar 

  19. Samokhina, L.; Schrinner, M.; Ballauff, M. Binding of oppositely charged surfactants to spherical polyelectrolyte brushes: A study by cryogenic transmission electron microscopy. Langmuir2007, 23, 3615–3619.

    Article  CAS  Google Scholar 

  20. Chen, Q.; Bae, S. C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature2011, 469, 381–384.

    Article  CAS  Google Scholar 

  21. Yang, S. W.; Gao, L. Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc.2006, 128, 9330–9331.

    Article  CAS  Google Scholar 

  22. Choueiri, R. M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E. M.; Querejeta-Fernández, A.; Han, L.; Xin, H. L.; Gang, O.; Zhulina, E. B.; Rubinstein, M.; Kumacheva, E. Surface patterning of nanoparticles with polymer patches. Nature2016, 538, 79–83.

    Article  CAS  Google Scholar 

  23. Kravchenko, V. S.; Potemkin, I. I. Self-assembly of rarely polymer-grafted nanoparticles in dilute solutions and on a surface: From non-spherical vesicles to graphene-like sheets. P olymer2018, 142, 23–32.

    CAS  Google Scholar 

  24. Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol.2015, 10, 453–458.

    Article  CAS  Google Scholar 

  25. Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev.2011, 111, 3736–3827.

    Article  CAS  Google Scholar 

  26. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.1995, 117, 1–19.

    Article  CAS  Google Scholar 

  27. Csajka, F. S.; Seidel, C. Strongly charged polyelectrolyte brushes: A molecular dynamics study. M acromolecules2000, 33, 2728–2739.

    Article  CAS  Google Scholar 

  28. Hao, Q. H.; Xia, G.; Tan, H. G.; Chen, E. Q.; Yang, S. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions. Phys. Chem. Chem. Phys.2018, 20, 26542–26551.

    Article  CAS  Google Scholar 

  29. Hoda, N.; Larson, R. G. Explicit- and implicit-solvent molecular dynamics Simulations of complex formation between polycations and polyanions. M acromolecules2009, 42, 8851–8863.

    Article  CAS  Google Scholar 

  30. Huißmann, S.; Likos, C. N.; Blaak, R. Explicit vs implicit water simulations of charged dendrimers. Macromolecules2012, 45, 2562–2569.

    Article  Google Scholar 

  31. Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: Molecular dynamics simulations. M acromolecules2011, 44, 5798–5816.

    Article  CAS  Google Scholar 

  32. Grest, G. S.; Kremer, K.; Witten, T. A. Structure of many-arm star polymers: A molecular dynamics simulation. M acromolecules1987, 20, 1376.

    Article  CAS  Google Scholar 

  33. Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with polyelectrolyte midblock: A coarse-grained molecular dynamics simulation study. Soft Matter2016, 12, 4611–4620.

    Article  CAS  Google Scholar 

  34. Mei, Y.; Hoffmann, M.; Ballauff, M.; Jusufi, A. Spherical polyelectrolyte brushes in the presence of multivalent counterions: The effect of fluctuations and correlations as determined by molecular dynamics simulations. Phys. Rev. E2008, 77, 031805.

    Article  Google Scholar 

  35. Jusufi, A.; Likos, C. N.; Löwen, H. Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars. J. Chem. Phys.2002, 116, 11011–11027.

    Article  CAS  Google Scholar 

  36. Pollock, E. L.; Glosli, J. Comments on P3M, FMM, and the Ewald method for large periodic coulombic systems. Comput. Phys. Commun.1996, 95, 93–110.

    Article  CAS  Google Scholar 

  37. Lane, J. M. D.; Grest, G. S. Spontaneous asymmetry of coated spherical nanoparticles in solution and at liquid-vapor interfaces. Phys. Rev. Lett.2010, 104, 235501–235504.

    Article  Google Scholar 

  38. Chi, P.; Li, B. H.; Shi, A. C. Conformation transitions of a polyelectrolyte chain: A replica-exchange Monte-Carlo study. Phys. Rev. E2011, 84, 021804.

    Article  Google Scholar 

  39. Chi, P.; Wang, Z.; Yin, Y. H.; Li, B. H. Finite-length effects on the coil-globule transition of a strongly charged polyelectrolyte chain in a salt-free solvent. Phys. Rev. E2013, 87, 042608.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21474005 and 21674005) and the Fundamental Research Funds for the Central Universities (No. 3122018L007) and Quality Course Construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Ge Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, HG., Xia, G., Liu, LX. et al. Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction. Chin J Polym Sci 38, 394–402 (2020). https://doi.org/10.1007/s10118-020-2351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2351-8

Keywords

Navigation