Skip to main content
Log in

Melt Crystallization of Poly(butylene 2,6-naphthalate)

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(butylene 2,6-naphthalate) (PBN) is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit. Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties, superior chemical resistance, and outstanding gas barrier characteristics. Many of the properties rely on the presence of crystals and the formation of a semicrystalline morphology. To develop specific crystal structures and morphologies during cooling the melt, precise information about the melt-crystallization process is required. This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN. At rather low supercooling of the melt, with decreasing crystallization temperature, β’- and α-crystals grow directly from the melt and organize in largely different spherulitic superstructures. Formation of α-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure, then yielding a non-spherulitic semicrystalline morphology. Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K·s−1. For this reason, investigation of the two-step crystallization process at low temperatures requires application of sophisticated experimental tools. These include temperature-resolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry. Fast scanning chip calorimetry allows freezing the transient liquid-crystalline structure before its conversion into α-crystals, by fast cooling to below its glass transition temperature. Subsequent analysis using polarized-light optical microscopy reveals its texture and X-ray scattering confirms the smectic arrangement of the mesogens. The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition, including quantitative data about the crystallization kinetics, semicrystalline morphologies at the micrometer length scale, as well as nanoscale X-ray structure information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karayannidis, G. P.; Papageorgiou, G. Z.; Bikiaris, D. N; Tourasanidis, E. V. Synthesis and thermal behaviour of poly-(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer1998, 39, 4129–4134.

    CAS  Google Scholar 

  2. Jeong, Y. G.; Jo, W. H.; Lee, S. C. Synthesis and crystallization behavior of poly(m-methylene 2,6-naphthalate-co-1,4-cyclohe-xylenedimethylene 2,6-naphthalate) copolymers. Macromolecules2003, 36, 4051–4059.

    CAS  Google Scholar 

  3. Soccio, M.; Finelli, L.; Lotti, N.; Siracusa, V.; Ezquerra, T. A.; Munari, A. Novel ethero atoms containing polyesters based on 2,6-naphthalendicarboxylic acid: a comparative study with poly(butylene naphthalate). J. Polym. Sci., Part B: Polym. Phys.2007, 45, 1694–1703.

    CAS  Google Scholar 

  4. Hubbard, P.; Brittain, W. J.; Simonsick, W. J.; Ross, C. W. Synthesis and ring-opening polymerization of poly(alkylene 2,6-naphthalenedicarboxylate) cyclic oligomers. Macromolecules1996, 29, 8304–8307.

    CAS  Google Scholar 

  5. https://www.teijin.com/products/resin/pbn/

  6. Soccio, M.; Nogales, A.; García-Gutierrez, M. C.; Lotti, N.; Munari, A.; Ezquerra, T. A. Origin of the subglass dynamics in aromatic polyesters by labeling the dielectric relaxation with ethero atoms. Macromolecules2008, 41, 2651–2655.

    CAS  Google Scholar 

  7. Mija, et al. 2018, U.S. Pat., US2018/03051A1

  8. https://marketdesk.us/report/global-polybutylene-naphthalate-resin-pbn-resin-market-pr/66961/#details

  9. Wang, C. S.; Lin, C. H. On the miscibility and transesterification of poly(butylene naphthalate) with a novel phosphorus containing polyester. Polymer2000, 41, 4029–4037.

    CAS  Google Scholar 

  10. Yoon, K. H.; Lee, S. C.; Park, O. O. Thermal properties of poly(ethylene 2,6-naphthalate) and poly(butylene 2,6-naphthalate) blends. Polym. J.1994, 26, 816–821.

    CAS  Google Scholar 

  11. Dangseeyun, N.; Supaphol, P.; Nithitanakul, M. Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym. Test.2004, 23, 187–194.

    CAS  Google Scholar 

  12. Lin, C. H.; Wang, C. S. Miscibility of poly(etherimide) and poly(butylene naphthalate) blends. Polym. Bull.2001, 46, 191–196.

    CAS  Google Scholar 

  13. Lee, S. C.; Yoon, K. H.; Kim, J. H. Crystallization kinetics of poly(butylene 2,6-naphthalate) and its copolyesters. Polym. J. 1997, 29, 1–6.

    Google Scholar 

  14. Papageorgiou, G. Z.; Karayannidis, G. P. Multiple melting behaviour of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer1999, 40, 5325–5332.

    CAS  Google Scholar 

  15. Papageorgiou, G. Z.; Karayannidis, G. P. Observations during crystallisation of poly(ethylene-co-butylene naphthalene-2,6-dicarboxylate)s. Polymer2001, 42, 8197–8205.

    CAS  Google Scholar 

  16. Papageorgiou, G. Z.; Karayannidis, G. P.; Bikiaris, D. N.; Stergiou, A.; Litsardakis, G.; Makridis, S. S. Wide-angle X-ray diffraction and differential scanning calorimetry study of the crystallization of poly(ethylene naphthalate), poly(butylene naphthalate), and their copolymers. J. Polym. Sci., Part B: Polym. Phys.2004, 42, 843–860.

    CAS  Google Scholar 

  17. Papageorgiou, D. G.; Bikiaris, D. N.; Papageorgiou, G. Z. Synthesis and controlled crystallization of in situ prepared poly(butylene-2,6-naphthalate) nanocomposites. Cryst. Eng. Comm. 201820 3590–3600.

    CAS  Google Scholar 

  18. Soccio, M.; Gazzano, M.; Lotti, N.; Finelli, L.; Munari, A. Copolymerization: a new tool to selectively induce poly(butylene naphthalate) crystal form. J. Polym. Sci., Part B: Polym. Phys.2009, 47, 1356–1367.

    CAS  Google Scholar 

  19. Soccio, M.; Gazzano, M.; Lotti, N.; Finelli, L.; Munari, A. Synthesis and characterization of novel random copolymers based on PBN: influence of thiodiethylene naphthalate co-units on its polymorphic behaviour. Polymer2010, 51, 192–200.

    CAS  Google Scholar 

  20. Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules1976, 9, 266–273.

    CAS  Google Scholar 

  21. Watanabe, H. Stretching and structure of polybutylene-naphthalene-2,6-dicarboxylate films. Kobunshi. Ronbunshu.1976, 33, 229–237.

    CAS  Google Scholar 

  22. Koyano, H.; Yamamoto, Y.; Saito, Y.; Yamanobe, T.; Komoto, T. Crystal structure of poly(butylene-2,6-naphthalate). Polymer1998, 39, 4385–4391.

    CAS  Google Scholar 

  23. Chiba, T.; Asai, S.; Xu, W.; Sumita, M. Analysis of crystallization behavior and crystal modifications of poly(butylene-2,6-naphthalene dicarboxylate). J. Polym. Sci., Part B: Polym. Phys.1999, 37, 561–574.

    CAS  Google Scholar 

  24. Ju, M. Y.; Huang, J. M.; Chang, F. C. Crystal polymorphism of poly(butylene-2,6-naphthalate) prepared by thermal treatments. Polymer2002, 43, 2065–2074.

    CAS  Google Scholar 

  25. Yamanobe, T.; Matsuda, H.; Imai, K.; Hirata, A.; Mori, S.; Komoto, T. Structure and physical properties of naphthalene containing polyesters. I. Structure of poly(butylene 2,6-naphthalate) and poly(ethylene 2,6-naphthalate) as studied by solid state NMR spectroscopy. Polym. J.1996, 28, 177–181.

    CAS  Google Scholar 

  26. Tonelli, A. E. The conformations of poly(butylene-terephthalate) and poly(butylene-2,6-naphthalate) chains in their α and β crystalline polymorphs. Polymer2002, 43, 6069–6072.

    CAS  Google Scholar 

  27. Milani, A. A revisitation of the polymorphism of poly(butylene-2,6-naphthalate) from periodic first-principles calculations. Polymer2014, 55, 3729–3735.

    CAS  Google Scholar 

  28. Soccio, M.; Lotti, N.; Finelli, L.; Munari, A. Equilibrium melting temperature and crystallization kinetics of α- and β ’-PBN crystal forms. Polym. J.2012, 44, 174–180.

    CAS  Google Scholar 

  29. Jeong, Y. G.; Jo, W. H.; Lee, S. C. Cocrystallization behavior of poly(butylene terephthalate-co-butylene 2,6-naphthalate) random copolymers. Macromolecules2000, 33, 9705–9711.

    CAS  Google Scholar 

  30. Konishi, T.; Nishida, K.; Matsuba, G.; Kanaya, T. Mesomorphc phase of poly(butylene-2,6-naphthalate). Macromolecules2008, 41, 3157–3161.

    CAS  Google Scholar 

  31. Tokita, M.; Watanabe, J. Several interesting fields exploited through understanding of polymeric effects on liquid crystals of main-chain polyesters. Polym. J.2006, 38, 611–638.

    CAS  Google Scholar 

  32. Tokita, M.; Osada, K.; Watanabe, J. Thermotropic liquid crystals of main-chain polyesters having a mesogenic 4,4’-biphenyldicarboxylate unit XI Smectic liquid crystalline glass. Polym. J.1998, 30, 589–595.

    CAS  Google Scholar 

  33. Wunderlich, B. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta1999, 340, 37–52.

    Google Scholar 

  34. Ju, M. Y.; Chang, F. C. Multiple melting behavior of poly(butylene-2,6-naphthalate). Polymer2001, 42, 5037–5045.

    CAS  Google Scholar 

  35. Ding, Q.; Jehnichen, D.; Göbel, M.; Soccio, M.; Lotti, N.; Cavallo, D.; Androsch, R. Smectic liquid crystal Schlieren texture in rapidly cooled poly(butylene naphthalate). Eur. Polym. J.2018101, 90–95.

    CAS  Google Scholar 

  36. Gazzano, M.; Soccio, M.; Lotti, N.; Finelli, L.; Munari, A. Crystallization kinetics, melting behavior, and RAP of novel etheroatom containing naphthyl polyesters. J. Therm. Anal. Calorim.2012, 110, 907–915.

    CAS  Google Scholar 

  37. Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. Phys. Chem.1887, 22, 286–330.

    Google Scholar 

  38. Threlfall, T. Structural and thermodynamic explanations of Ostwald’s rule. Org. Process Res. Dev.2003, 7, 1017–1027.

    CAS  Google Scholar 

  39. Androsch, R.; Soccio, M.; Lotti, N.; Cavallo, D.; Schick, C. Cod-crystallization of poly(butylene 2,6-naphthalate) following Ostwald’s rule of stages. Thermochim. Acta2018, 670, 71–75.

    CAS  Google Scholar 

  40. Nishida, K.; Zhuravlev, E.; Yang, B.; Schick, C.; Shiraishi, Y.; Kanaya, T. Vitrification and crystallization of poly(butylene-2,6-naphthalate). Thermochim. Acta2015, 603, 110–115.

    CAS  Google Scholar 

  41. Bernstein, J. Polymorphism in molecular crystals. Oxford University Press, New York, 2002.

    Google Scholar 

  42. Chung, S. Y.; Kim, Y. M.; Kim, J. G.; Kim, Y. J. Mutiphae transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat. Phys.2009, 5, 68–73.

    CAS  Google Scholar 

  43. Gliko, O.; Neumaier, N.; Pan, W.; Haase, I.; Fischer, M.; Bacher, A.; Weinkauf, S.; Vekilov, P. G. A metastable prerequisite for the growth of lumazine synthase crystals. J. Am. Chem. Soc.2005, 127, 3433–3438.

    CAS  PubMed  Google Scholar 

  44. Chung, S.; Shin, S. H.; Bertozzi, C. R.; De Yoreo, J. J. Self-catalyzed growth of S layers va an amorphous-to-crystalline transition limited by folding kinetics. Proc. Natl. Acad. Sci. 2010 107 16536–16541.

    CAS  PubMed  Google Scholar 

  45. Auer, S.; Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature2001, 409, 1020–1023.

    CAS  PubMed  Google Scholar 

  46. Zhang, T. H.; Liu, X. Y. Nucleation: what happens at the initial stage? Angew. Chem. Int. Ed.2009, 48, 1308–1312.

    CAS  Google Scholar 

  47. Pérez-Manzano, J.; Fernández-Blázquez, J. P.; Bello, A.; Pérez, E. Liquid-crystalline copolymers of bibenzoate and terephthalate units. Polym. Bull.2006, 56, 571–577.

    Google Scholar 

  48. Hu, Y. S.; Hiltner, A.; Baer, E. Solid state structure and oxygen transport properties of copolyesters based on smectic poly(hexamethylene 4,4’-bibenzoate). Polymer2006, 47, 2423–2433.

    CAS  Google Scholar 

  49. Fernández-Blázquez, J. P.; Pérez-Manzano, J.; Bello, A.; Pérez, E. The two crystallization modes of mesophase forming polymers. Macromolecules 2007, 40, 1775–1778.

    Google Scholar 

  50. Heck, B.; Perez, E.; Strobl, G. Two competing crystallization modes in a smectogenic polyester. Macromolecules 2010, 43, 4172–4183.

    CAS  Google Scholar 

  51. Jin, J. I.; Kang, C. S. Thermotropic main chain polyesters. Prog. Polym. Sci.1997, 22, 937–973.

    CAS  Google Scholar 

  52. Watanabe, J.; Hayashi, M. Thermotropic liquid crystals of polyesters having a mesogenic p,p’-bibenzoate unit. 1. Smectic A mesophase properties of polyesters composed of p,p’-bibenzoic acid and alkylene glycols. Macromolecules1988, 21, 278–280.

    CAS  Google Scholar 

  53. Watanabe, J.; Hayashi, M. Thermotropic liquid crystals of polyesters having a mesogenic p,p’-bibenzoate unit. 2. X-ray study on smectic mesophase structures of BB-5 and BB-6. Macromolecules1989, 22, 4083–4088.

    CAS  Google Scholar 

  54. Bello, A.; Pereña, J. M.; Pérez, E.; Benavente, R. Thermotropc liquid crystal polyesters derived from 4,4’-biphenyldicarboxylic acid and oxyalkylene spacers. Macromol. Symp.1994, 84, 297–306.

    CAS  Google Scholar 

  55. Chen, D.; Zachmann, H. G. Glass transition temperature of copolyesters of PET, PEN and PHB as determined by dynamic mechanical analysis. Polymer1991, 32, 1612–1621.

    CAS  Google Scholar 

  56. Watanabe, J.; Hasayashi, M.; Nakata, Y.; Niori, T.; Tokita, M. Smectic liquid crystals in main-chain polymers. Prog. Polym. Sci.1997, 22, 1053–1087.

    CAS  Google Scholar 

  57. Martínez-Gómez, A.; Encinar, M.; Fernández-Blázquez, J. P.; Rubio, R. G.; Pérez, E. Liquid crystalline polymers. Springer, Berlin, 2016, p. 453–476.

    Google Scholar 

  58. Keller, A.; Hikosaka, M.; Rastogi, S.; Toda, A.; Barham, P. J.; Goldbeck-Wood, G. An approach to the formation and growth of new phases with application to polymer crystallization: effect of finite size, metastability, and Ostwald’s rule of stages. J. Mater. Sci.1994, 29, 2579–2604.

    CAS  Google Scholar 

  59. Keller, A.; Cheng, S. Z. D. The role of metastability in polymer phase transitions. Polymer1998, 39, 4461–4487.

    Google Scholar 

  60. Cheng, S. Z. D.; Zhu, L. Y. Li, C.; Honigfort, P. S.; Keller, A. Size effect of metastable states on semicrystalline polymer structures and morphologies. Thermochim. Acta1999, 332, 105–113.

    CAS  Google Scholar 

  61. Cheng, S. Z. D. Phase transitions in polymers. Elsevier, Amsterdam, 2008.

    Google Scholar 

  62. Cavallo, D.; Mileva, D.; Portale, G.; Zhang, L.; Balzano, L.; Alfonso, G. C.; Androsch, R. Mesophase-mediated crystallization of poly(butylene-2,6-naphthalate): an example of Ostwald’s rule of stages. ACS Macro Lett.2012, 1, 1051–1055.

    CAS  Google Scholar 

  63. Achilias, D. S.; Papageorgiou, G. Z.; Karayannidis, G. P. Evaluation of the isoconversional approach to estimating the Hoffman-Lauritzen parameters from the overall rates of non-isothermal crystallization of polymers. Macromol. Chem. Phys.2005, 206, 1511–1519.

    CAS  Google Scholar 

  64. Schick, C.; Mathot, V. Fast scanning calorimetry. Springer, Berlin, 2016.

    Google Scholar 

  65. Toda, A.; Androsch, R.; Schick, C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer2016, 91, 239–263.

    CAS  Google Scholar 

  66. Androsch, R.; Soccio, M.; Lotti, N.; Jehnichen, D.; Göbel, M.; Schick, C. Enthalpy of formation and disordering temperature of transient monotropic liquid crystals of poly(butylene 2,6-naphthalate). Polymer2018, 158, 77–82.

    CAS  Google Scholar 

  67. Cheng, S. Z. Phase transitions in polymers: the role of metastable states. Elsevier, Amsterdam, 2008, p. 25.

    Google Scholar 

  68. Singh, S. Liquid crystals fundamentals. World Scientific, New Jersey, 2002, p. 58

    Google Scholar 

  69. de Gennes, P. G.; Prost, J. The physics of liquid crystals. Oxford University Press, New York, 1993, p. 58

    Google Scholar 

  70. Sackmann, H.; Demus, D. The polymorphism of liquid crystals. Mol. Cryst.1966, 2, 81–102.

    Google Scholar 

  71. Nehring, J.; Saupe, A. On the schlieren texture in nematic and smectic liquid crystals. J. Chem. Soc., Faraday Trans. 2: Mol. Chem. Phys.1972, 68, 1–15.

    CAS  Google Scholar 

  72. Demus, D. Schlieren textures in smectic liquid crystals. Kristall und Technik1975, 10, 933–946.

    CAS  Google Scholar 

  73. Jakeways, R.; Ward, I. M.; Wilding, M. A.; Hall, I. H.; Desborough, I. J.; Pass, M. G. Crystal deformation in aromatic polyesters. J. Polym. Sci., Part B: Polym. Phys.1975, 13, 799–813.

    CAS  Google Scholar 

  74. Sun, Y. M.; Wang, C. S. Novel copolyesters containing naphthalene structure. I. From bis(hydroxyalkyl)naphthalate and bis[4-(2-hydroxyethoxy)aryl] compounds. J. Polym. Sci., Part A: Polym. Chem.1996, 34, 1783–1792.

    CAS  Google Scholar 

  75. Zhuravlev, E.; Schmelzer, J. W.; Abyzov, A. S.; Fokin, V. M.; Androsch, R.; Schick, C. Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst. Growth Des.2015, 15, 786–798.

    CAS  Google Scholar 

  76. Androsch, R.; Iqbal, H. N.; Schick, C. Non-isothermal crystal nucleation of poly(L-lactic acid). Polymer2015, 81, 151–158.

    CAS  Google Scholar 

  77. Salmerón Sánchez, M.; Mathot, V. B.; Vanden Poel, G.; Gómez Ribelles, J. L. Effect of the cooling rate on the nucleation kinetics of poly(L-lactic acid) and its influence on morphology. Macromolecules2007, 40, 7989–7997.

    Google Scholar 

  78. Papageorgiou, G. Z.; Tsanaktsis, V.; Bikiaris, D. N. Crystallization of poly(butylene-2,6-naphthalate-co-butylene adipate) copolymers: regulating crystal modification of the polymorphic parent homopolymers and biodegradation. Cryst. Eng. Commun. 2014, 16, 7963–7978.

    CAS  Google Scholar 

  79. Ding; Q.; Soccio, M.; Lotti, N.; Mahmood, N.; Cavallo, D.; Androsch, R. Crystallization of poly(butylene 2,6-naphthalate) containing diethylene 2,6-naphthalate constitutional defects. Polym. Crys. 2019.

    Google Scholar 

Download references

Acknowledgments

Q. D. acknowledges financial support from the China Scholarship Council (CSC), for performing research at the Martin Luther University Halle-Wittenberg (Germany). R. A. and Q. D. acknowledge financial support from Sino-German Center for Research Promotion (GZ 1514).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dario Cavallo or René Androsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Soccio, M., Lotti, N. et al. Melt Crystallization of Poly(butylene 2,6-naphthalate). Chin J Polym Sci 38, 311–322 (2020). https://doi.org/10.1007/s10118-020-2354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2354-5

Keywords

Navigation