Skip to main content
Log in

Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Two conjugated polymers (PuIDTBD and PuIDTQ) with unsymmetric side chains have been prepared for polymer solar cells using two other polymers (PIDTBD and PIDTQ) with symmetric side chains as control compounds. The combination of methyl and 4-hexylphenyl side chains on the same bridged carbon can ensure good solubility, decrease π-π stacking distances, and bring proper miscibility with PC71BM simultaneously. Therefore, the corresponding polymer solar cells (PSCs) based on donor polymers with unsymmetric side chains exhibited enhanced short-circuit current density (JSC) and power conversion efficiency (PCE) compared with those of control polymers. The PIDTBD and PIDTQ based devices possessed low PCE of 2.13% and 1.48%, while PCEs of devices based on PuIDTBD and PuIDTQ were improved to 3.93% and 4.12%, respectively. The results demonstrate that unsymmetric side chain engineering of conjugated polymers is an effective approach to achieve high performance PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: Recent progress, challenges, and prospects. Angew. Chem. Int. Ed.2019, 58, 4129–4142.

    Article  CAS  Google Scholar 

  2. Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater.2016, 28, 4734–4739.

    Article  CAS  Google Scholar 

  3. Yang, B.; Zhang, S.; Chen, Y.; Cui, Y.; Liu, D.; Yao, H.; Zhang, J.; Wei, Z.; Hou, J. Investigation of conjugated polymers based on naphtho[2,3-c]thiophene-4,9-dione in fullerene-based and fullerene-free polymer solar cells. Macromolecules2017, 50, 1453–1462.

    Article  CAS  Google Scholar 

  4. Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun.2018, 9, 743.

    Article  Google Scholar 

  5. Scharber, M. C. On the efficiency limit of conjugated polymer: Fullerene-based bulk heterojunction solar cells. Adv. Mater.2016, 28, 1994–2001.

    Article  CAS  Google Scholar 

  6. Shi, Z.; Bai, Y.; Chen, X.; Zeng, R.; Tan, Z. A. Tandem structure: A breakthrough in power conversion efficiency for highly efficient polymer solar cells. Sustain. Energy Fuels2019, 3, 910–934.

    Article  CAS  Google Scholar 

  7. Chochos, C. L.; Drakopoulou, S.; Katsouras, A.; Squeo, B. M.; Sprau, C.; Colsmann, A.; Gregoriou, V. G.; Cando, A. P.; Allard, S.; Scherf, U.; Gasparini, N.; Kazerouni, N.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Beyond donor-acceptor (D-A) approach: Structure-optoelectronic properties—Organic photovoltaic performance correlation in new D-A1-D-A2 low-bandgap conjugated polymers. Macromol. Rapid Commun.2017, 38, 1600720.

    Article  Google Scholar 

  8. Guo, X.; Baumgarten, M.; Mullen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci.2013, 38, 1832–1908.

    Article  CAS  Google Scholar 

  9. Chochos, C. L.; Singh, R.; Kim, M.; Gasparini, N.; Katsouras, A.; Kulshreshtha, C.; Gregoriou, V. G.; Keivanidis, P. E.; Ameri, T.; Brabec, C. J.; Cho, K.; Avgeropoulos, A. Enhancement of the power conversion efficiency in organic photovoltaics by unveiling the appropriate polymer backbone enlargement approach. Adv. Funct. Mater.2016, 26, 1840–1848.

    Article  CAS  Google Scholar 

  10. Mahesh, K.; Karpagam, S.; Pandian, K. How to design donoracceptor based heterocyclic conjugated polymers for applications from organic electronics to sensors. Top. Curr. Chem.2019, 377, 12.

    Article  CAS  Google Scholar 

  11. Wang, M.; Hu, X.; Liu, L.; Duan, C.; Liu, P.; Ying, L.; Huang, F.; Cao, Y. Design and synthesis of copolymers of indacenodithiophene and naphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) for polymer solar cells. Macromolecules2013, 46, 3950–3958.

    Article  CAS  Google Scholar 

  12. Yin, Y.; Zhang, Y.; Zhao, L. Indaceno-based conjugated polymers for polymer solar cells. Macromol. Rapid Commun.2018, 39, 1700697.

    Article  Google Scholar 

  13. Bronstein, H.; Leem, D. S.; Hamilton, R.; Woebkenberg, P.; King, S.; Zhang, W.; Ashraf, R. S.; Heeney, M.; Anthopoulos, T. D.; Mello, J. D.; McCulloch, I. Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules2011, 44, 6649–6652.

    Article  CAS  Google Scholar 

  14. Ma, Y.; Kang, Z.; Zheng, Q. Recent advances in wide bandgap semiconducting polymers for polymer solar cells. J. Mater. Chem. A2017, 5, 1860–1872.

    Article  CAS  Google Scholar 

  15. Qin, T.; Zang, Y.; Bai, W. Y.; Yao, K.; Xu, Y. X. The influence of oxygen atoms on conformation and π-π stacking of ladder-type donor-based polymers and their photovoltaic properties. Macromol. Rapid Commun.2017, 38, 1700156.

    Article  Google Scholar 

  16. Wang, H. C.; Li, Q. Y.; Yin, H. B.; Ren, X.; Yao, K.; Zheng, Y.; Xu, Y. X. Synergistic effects of selenophene and extended ladder-type donor units for efficient polymer solar cells. Macromol. Rapid Commun.2018, 39, 1700483.

    Article  Google Scholar 

  17. Xiao, Z.; Liu, F.; Geng, X.; Zhang, J.; Wang, S.; Xie, Y.; Li, Z.; Yang, H.; Yuan, Y.; Ding, L. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci. Bull.2017, 62, 1331–1336.

    Article  CAS  Google Scholar 

  18. Xu, Y. X.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, Y. X.; Li, C. Z.; Li, X.; Chen, W. C.; Jen, A. K. Y. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Adv. Mater.2012, 24, 6356–6361.

    Article  CAS  Google Scholar 

  19. Zhang, Z. G.; Li, Y. Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Sci. China Chem.2015, 58, 192–209.

    Article  CAS  Google Scholar 

  20. Zhang, M.; Guo, X.; Wang, X.; Wang, H.; Li, Y. Synthesis and photovoltaic properties of D-A copolymers based on alkylsubstituted indacenodithiophene donor unit. Chem. Mater.2011, 23, 4264–4270.

    Article  CAS  Google Scholar 

  21. Zhang, W.; Han, Y.; Zhu, X.; Fei, Z.; Feng, Y.; Treat, N. D.; Faber, H.; Stingelin, N.; McCulloch, I.; Anthopoulos, T. D.; Heeney, M. A novel alkylated indacenodithieno[3,2-b]thiophene-based polymer for high-performance field-effect transistors. Adv. Mater.2016, 28, 3922–3927.

    Article  CAS  Google Scholar 

  22. Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W.; McCulloch, I.; DeLongchamp, D. M. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun.2013, 4, 2238.

    Article  Google Scholar 

  23. Chochos, C. L.; Katsouras, A.; Gasparini, N.; Koulogiannis, C.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Rational design of high-performance wide-bandgap (≈2 eV) polymer semiconductors as electron donors in organic photovoltaics exhibiting high open circuit voltages (≈ 1 V). Macromol. Rapid Commun.2017, 38, 1600614.

    Article  Google Scholar 

  24. Wang, M.; Cai, D.; Yin, Z.; Chen, S. C.; Du, C. F.; Zheng, Q. Asymmetric-indenothiophene-based copolymers for bulk heterojunction solar cells with 9.14% efficiency. Adv. Mater.2016, 28, 3359–3365.

    Article  CAS  Google Scholar 

  25. Liu, D.; Zhu, Q.; Gu, C.; Wang, J.; Qiu, M.; Chen, W.; Bao, X.; Sun, M.; Yang, R. High-performance photovoltaic polymers employing symmetry-breaking building blocks. Adv. Mater.2016, 28, 8490–8498.

    Article  CAS  Google Scholar 

  26. Bai, W.; Xu, X.; Li, Q.; Xu, Y.; Peng, Q. Efficient nonfullerene polymer solar cells enabled by small-molecular acceptors with a decreased fused-ring core. Small Methods2018, 2, 1700373.

    Article  Google Scholar 

  27. Feng, S.; Zhang, C. E.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater.2017, 29, 1703527.

    Article  Google Scholar 

  28. Cao, J.; Shan, T.; Wang, J. K.; Xu, Y. X.; Ren, X.; Zhong, H. Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigments2019, 165, 354–360.

    Article  CAS  Google Scholar 

  29. Song, C. E.; Kim, Y. J.; Suranagi, S. R.; Kini, G. P.; Park, S.; Lee, S. K.; Shin, W. S.; Moon, S. J.; Kang, I. N.; Park, C. E.; Lee, J. C. Impact of the crystalline packing structures on charge transport and recombination via alkyl chain tunability of DPP-based small molecules in bulk heterojunction solar cells. ACS Appl. Mater. Interfaces2016, 8, 12940–12950.

    Article  CAS  Google Scholar 

  30. Fan, J.; Zhang, Y.; Lang, C.; Qiu, M.; Song, J.; Yang, R.; Guo, F.; Yu, Q.; Wang, J.; Zhao, L. Side chain effect on poly(beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells. Polymer2016, 82, 228–237.

    Article  CAS  Google Scholar 

  31. Liu, X.; Li, Q.; Li, Y.; Gong, X.; Su, S. J.; Cao, Y. Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. J. Mater. Chem. A2014, 2, 4004–4013.

    Article  CAS  Google Scholar 

  32. Liu, D.; Wang, J.; Gu, C.; Li, Y.; Bao, X.; Yang, R. Stirring up acceptor phase and controlling morphology via choosing appropriate rigid aryl rings as lever arms in symmetry-breaking benzodithiophene for high-performance fullerene and fullerene-free polymer solar cells. Adv. Mater.2018, 30, 1705870.

    Article  Google Scholar 

  33. Zhu, T.; Wan, Y.; Guo, Z.; Johnson, J.; Huang, L. Two birds with one stone: Tailoring singlet fission for both triplet yield and exciton diffusion length. Adv. Mater.2016, 28, 7539–7547.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51403135) and Sichuan Science and Technology Program (No. 2019YJ0123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Liang Zhong or Yun-Xiang Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Shan, T., Cao, J. et al. Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance. Chin J Polym Sci 38, 342–348 (2020). https://doi.org/10.1007/s10118-020-2342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2342-9

Keywords

Navigation