Skip to main content

Advertisement

Log in

Metamodelling a 3D architectural root-system model to provide a simple model based on key processes and species functional groups

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The architecture of root systems determines where and how much resources plants can extract from the soil, how they compete for soil resources, and how they interact with soil organisms. We aimed to develop a 3D root-system model called RSCone for future inclusion into multispecies individual-based canopy models suitable to design integrated weed management or intercropping strategies.

Methods

We (1) proposed a conceptual root-system model consisting of empirical equations predicting root-system envelope, root length and biomass distribution from environmental conditions, species and plant stage, (2) calibrated the model from simulations with an existing architectural root-system model (ArchiSimple) to benefit from its knowledge on root functioning and the many parameterized crop and weed species, (3) identified the root-system architectural processes driving the key root state variables and (4) established species functional groups with Principal Component Analyses and clustering.

Results

RSCone consists of 17 equations and 14 parameters; it was calibrated for 22 weeds and 22 crop species and varieties. Six species functional groups were established, depending on their family (Poaceae, Fabaceae, other), root-extension rates, specific root length (SRL) and the time to reach maximum SRL.

Conclusion

RSCone is ready to be included into multispecies (crop and/or weed) dynamics models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aziz MM, Palta JA, Siddique KHM, Sadras VO (2017) Five decades of selection for yield reduced root length density and increased nitrogen uptake per unit root length in Australian wheat varieties. Plant Soil 413:181–192

    Article  CAS  Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. John Wiley & Sons, New York

    Google Scholar 

  • Bengough AG, Mullins CE (1990) Mechanical impedance to root-growth - a review of experimental-techniques and root-growth responses. J Soil Sci 41:341–358. https://doi.org/10.1111/j.1365-2389.1990.tb00070.x

    Article  Google Scholar 

  • Bodner G, Leitner D, Nakhforoosh A, Sobotik M, Moder K, Kaul H-P (2013) A statistical approach to root system classification. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00292

  • Bonneu A, Dumont Y, Rey H, Jourdan C, Fourcaud T (2012) 2012-01 - a minimal continuous model for simulating growth and development of plant root systems. Plant Soil 354:211–227. https://doi.org/10.1007/s11104-011-1057-7

    Article  CAS  Google Scholar 

  • Bouaziz A, Bruckler L (1989) Modeling wheat seedling growth and emergence. I. Seedling growth affected by soil water potential. Soil Sci Soc Am J 53:1832–1838

    Article  Google Scholar 

  • Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Henault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332

    Article  Google Scholar 

  • Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant. Neth J Agric Sci 10:399–408

    Google Scholar 

  • Brun F, Richard-Molard C, Pagès L, Chelle M, Ney B (2010) To what extent may changes in the root system architecture of Arabidopsis thaliana grown under contrasted homogenous nitrogen regimes be explained by changes in carbon supply? A modelling approach. J Exp Bot 61:2157–2169

    Article  CAS  Google Scholar 

  • Bui HH, Serra V, Pagès L (2015) Root system development and architecture in various genotypes of the Solanaceae family. Botany 93:465–474

    Article  Google Scholar 

  • Casper BB, Schenk HJ, Jackson RB (2003) Defining a plant's belowground zone of influence. Ecology 84:2313–2321

    Article  Google Scholar 

  • Cassab GI, Eapen D, Campos ME (2013) Root hydrotropism: an update. Am J Bot 100:14–24. https://doi.org/10.3732/ajb.1200306

    Article  PubMed  CAS  Google Scholar 

  • Colas F (2018) Co-développement d'un modèle d'aide à la décision pour la gestion intégrée de la flore adventice. Métamodélisation et analyse de sensibilité d'un modèle mécaniste complexe (FLORSYS) des effets des systèmes de culture sur les services et disservices écosystémiques de la flore adventice. Univ Bourgogne Franche-Comté, Dijon, France.

  • Colbach N, Biju-Duval L, Gardarin A, Granger S, Guyot SHM, Mézière D, Munier-Jolain NM, Petit S (2014) The role of models for multicriteria evaluation and multiobjective design of cropping systems for managing weeds. Weed Res 54:541–555. https://doi.org/10.1111/wre.12112

    Article  Google Scholar 

  • Colbach N, Colas F, Cordeau S, Maillot T, Moreau D, Queyrel W, Villerd J (2019) The FLORSYS crop-weed canopy model as a tool to optimise crop diversification. Eur J Agron

  • de Willigen P, Heinen M, Mollier A, Noordwijk MV (2002) Two-dimensional growth of a root system modelled as a diffusion process. I. Analytical solutions. Plant Soil 240:225–234. https://doi.org/10.1023/A:1015744529454

    Article  Google Scholar 

  • Drouet JL, Pagès L, Serra V (2005) Dynamics of leaf mass per unit leaf area and root mass per unit root volume of young maize plants: implications for growth models. European Journal of Agronomy 22:185–193. https://doi.org/10.1016/j.eja.2004.02.005

    Article  Google Scholar 

  • Dunbabin VM, Postma JA, Schnepf A, Pagès L, Javaux M, Wu L, Leitner D, Chen YL, Rengel Z, Diggle AJ (2013) Modelling root–soil interactions using three–dimensional models of root growth, architecture and function. Plant Soil 372:93–124. https://doi.org/10.1007/s11104-013-1769-y

    Article  CAS  Google Scholar 

  • Dupuy L, Gregory PJ, Bengough AG (2010) Root growth models: towards a new generation of continuous approaches. J Exp Bot 61:2131–2143. https://doi.org/10.1093/jxb/erp389

    Article  PubMed  CAS  Google Scholar 

  • Dürr C, Aubertot JN, Richard G, Dubrulle P, Duval Y, Boiffin J (2001) SIMPLE: a model for SIMulation of PLant emergence predicting the effects of soil tillage and sowing operations. Soil Sci Soc Am J 65:414–423

    Article  Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782. https://doi.org/10.1080/01904169209364361

    Article  Google Scholar 

  • Faverjon L, Escobar-Gutiérrez A, Pagès L, Migault V, Louarn G (2019) Root growth and development do not directly relate to shoot morphogenetic strategies in temperate forage legumes. Plant Soil 435:277–294

    Article  CAS  Google Scholar 

  • Fayaud B, Coste F, Corre-Hellou G, Gardarin A, Durr C (2014) Modelling early growth under different sowing conditions: a tool to predict variations in intercrop early stages. Eur J Agron 52:180–190. https://doi.org/10.1016/j.eja.2013.09.009

    Article  Google Scholar 

  • Gardarin A, Dürr C, Colbach N (2012) Modeling the dynamics and emergence of a multispecies weed seed bank with species traits. Ecol Modelling 240:123–138. https://doi.org/10.1016/j.ecolmodel.2012.05.004

    Article  Google Scholar 

  • Gaudio N, Escobar-Gutierrez AJ, Casadebaig P, Evers JB, Gérard F, Louarn G, Colbach N, Munz S, Launay M, Marrou H, Barillot R, Hinsinger P, Bergez J-E, Combes D, Durand J-L, Frak E, Pagès L, Pradal C, Saint-Jean S, Werf WVD, Justes E (2019) Modeling mixed annual crops: current knowledge and future research avenues. A review Agron Sustain Dev doi 39:1–20. https://doi.org/10.1007/s13593-019-0562-6

    Article  Google Scholar 

  • Gérard F, Blitz-Frayret C, Hinsinger P, Pagès L (2017) Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant Soil 413:161–180. https://doi.org/10.1007/s11104-016-3092-x

    Article  CAS  Google Scholar 

  • Gibot-Leclerc S, Sallé G, Reboud X, Moreau D (2012) What are the traits of Phelipanche ramosa (L.) Pomel that contribute to the success of its biological cycle on its host Brassica napus L.? Flora 207:512–521

    Article  Google Scholar 

  • Grenz JH, Manschadi AM, De Voil P, Meinke H, Sauerborn J (2005) Assessing strategies for Orobanche sp. control using a combined seedbank and competition model. Agron J 97:1551–1559

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Jørnsgaard B, Kinane J, Jensen E (2008) Grain legume - cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288

    Article  Google Scholar 

  • Kutschera L, Lichtenegger E (1960) Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen. DLG-Verlag, Frankfurt am Main

    Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  • Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature 555:94–97. https://doi.org/10.1038/nature25783

    Article  PubMed  CAS  Google Scholar 

  • Malagoli P, Le Deunff E (2014) An updated model for nitrate uptake modelling in plants: II Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs. Annals of Botany 113:1007–1019

    Article  CAS  Google Scholar 

  • Marie G, Simioni G (2014) Extending the use of ecological models without sacrificing details: a generic and parsimonious meta-modelling approach. Methods Ecol Evol 5:934–943. https://doi.org/10.1111/2041-210x.12250

    Article  Google Scholar 

  • Metcalfe H, Milne AE, Coleman K, Murdoch AJ, Storkey J (2019) Modelling the effect of spatially variable soil properties on the distribution of weeds. Ecol Modelling 396:1–11. https://doi.org/10.1016/j.ecolmodel.2018.11.002

    Article  CAS  Google Scholar 

  • Moreau D, Abiven F, Busset H, Matejicek A, Pagès L (2017a) Effects of species and soil-nitrogen availability on root system architecture traits. Study on a set of weed and crop species Annals of Applied Biology 171:103–116. https://doi.org/10.1111/aab.12355

    Article  Google Scholar 

  • Moreau D, Abiven F, Busset H, Matejicek A, Pagès L (2017b) Effects of species and soil-nitrogen availability on root system architecture traits – study on a set of weed and crop species. Ann Appl Biol 171:103–116. https://doi.org/10.1111/aab.12355

    Article  Google Scholar 

  • Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L (2019) A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol 33:540–552

    Article  Google Scholar 

  • Munier-Jolain NM, Guyot SHM, Colbach N (2013) A 3D model for light interception in heterogeneous crop:weed canopies. Model structure and evaluation. Ecol Modelling 250: 101-110. Doi: https://doi.org/10.1016/j.ecolmodel.2012.10.023

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Pagès L (2011) Links between root developmental traits and foraging performance. Plant Cell Environ 34:1749–1760. https://doi.org/10.1111/j.1365-3040.2011.02371.x

    Article  PubMed  Google Scholar 

  • Pagès L, Bécel C, Boukcim H, Moreau D, Nguyen C, Sterckeman T, Voisin A-S (2014) Calibration and evaluation of ArchiSimple, a parsimonious model of the root system architecture. Ecol Model 290:76–84. https://doi.org/10.1016/j.ecolmodel.2013.11.014

    Article  Google Scholar 

  • Pagès L, Bruchou C, Garre S (2012) Links between root length density profiles and models of the root system architecture. Vadose Zone J 11. https://doi.org/10.2136/vzj2011.0152

  • Pagès L, Bruchou C, Garre S (2012) Links between root length density profiles and models of the root system architecture

  • Pagès L, Kervella J (2018) Seeking stable traits to characterize the root system architecture. Study on 60 species located at two sites in natura. Ann Bot 122:107–115. https://doi.org/10.1093/aob/mcy061

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagès L, Picon-Cochard C (2014) Modelling the root system architecture of Poaceae. Can we simulate integrated traits from morphological parameters of growth and branching? New Phytol 204:149–158

    Article  Google Scholar 

  • Pedersen A, Zhang K, Thorup-Kristensen K, Jensen LS (2010) Modelling diverse root density dynamics and deep nitrogen uptake—a simple approach. Plant Soil 326:493–510

    Article  CAS  Google Scholar 

  • Pointurier O (2019) Modélisation des effets des systèmes de culture sur la dynamique del a plante parasite orobanche rameuse en interaction avec les adventices. Université de Bourgogne, Dijon

    Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Renton M, Chauhan BS (2017) Modelling crop-weed competition: why, what, how and what lies ahead? Crop Protection 95:101–108. https://doi.org/10.1016/j.cropro.2016.09.003

    Article  Google Scholar 

  • Roger-Estrade J, Richard G, Caneill J, Boizard H, Coquet Y, Defossez P, Manichon H (2004) Morphological characterisation of soil structure in tilled fields: from a diagnosis method to the modelling of structural changes over time. Soil Tillage Research 79:33–49

    Article  Google Scholar 

  • Shishkova S, Rost TL, Dubrovsky JG (2008) Determinate root growth and meristem maintenance in angiosperms. Ann Bot 101:319–340. https://doi.org/10.1093/aob/mcm251

    Article  PubMed  CAS  Google Scholar 

  • Villa-Vialaneix N, Follador M, Ratto M, Leip A (2012) A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops. Environmental Modelling & Software 34:51–66. https://doi.org/10.1016/j.envsoft.2011.05.003

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by INRA and the French project CoSAC (ANR-15-CE18-0007). They authors are grateful to Maé Guinet, Marlène Lefèbvre, Mathieu Chanis and Juliette Senèze for contributing to the provision of datasets on legume species and genotypes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Colbach.

Additional information

Responsible Editor: W Richard Whalley.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1250 kb)

Appendix

Appendix

Table 6 List of crop and weed species used in ArchiSimple simulations to estimate RSCone parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagès, L., Pointurier, O., Moreau, D. et al. Metamodelling a 3D architectural root-system model to provide a simple model based on key processes and species functional groups. Plant Soil 448, 231–251 (2020). https://doi.org/10.1007/s11104-019-04416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04416-z

Keywords

Navigation