Skip to main content
Log in

Complex phylogeographic relationships among the Eurasian perch (Perca fluviatilis) populations in the eastern part of the Baltic Sea Region

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Eurasian perch (Perca fluviatilis) is an economically and environmentally important fish. Its distribution is changing because of many anthropogenic factors, including aquaculture and restocking. Careless dislocations enhance risk disrupt the established geographical genetic structure of this species. Set as a benchmark for future studies, this paper investigates the current perch status in the Baltic Sea Region. It presents the genetic diversity and phylogeographic relationships among 19 perch populations in Lithuania, Latvia and Belarus, on the basis of 489 perch sequences of the mtDNA D-loop region. Analysis of molecular data revealed that in the eastern part of the Baltic Sea Region, the genetic diversity of mtDNA D-loop of the perch was greater and different in comparison to that from other European locations. Based on SAMOVA results, perch samples were divided into four genetically distinct groups (I–IV). These groups indicate non-casual geographical distributions of genetically differentiated perch populations in Lithuania, Latvia and Belarus. The colonisation of the eastern part of the Baltic during the last deglaciation period resulted in perch populations that are genetically more complex than anticipated. The just-assessed current perch genetic diversity may be useful for monitoring its changes induced by growing anthropogenic activities in the Baltic Sea Region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akin, S., C. Şahin, B. Verep, D. Turan, A. M. Gözler, A. Bozkurt, K. Çelik, E. Çetin, A. Araci & I. Sargin, 2011. Feeding habits of introduced European perch (Perca fluviatilis) in an impounded large river system in Turkey. African Journal of Agricultural Research 6: 4293–4307.

    Google Scholar 

  • Aljanabi, S. M. & I. Martinez, 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25: 4692–4693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelt, H. J., P. Forster & A. Röhl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Behrmann-Godel, J., G. Gerlach & R. Eckmann, 2004. Postglacial colonization shows evidence for sympatric population splitting of Eurasian perch (Perca fluviatilis L.) in Lake Constance. Molecular Ecology 13: 491–497.

    Article  CAS  PubMed  Google Scholar 

  • Birnie-Gauvin, K., J. S. Tummers, M. C. Lucas & K. Aarestrup, 2017. Adaptive management in the context of barriers in European freshwater ecosystems. Journal of Environmental Management 204: 436–441.

    Article  PubMed  Google Scholar 

  • Butkauskas, D., A. Sruoga, A. Ragauskas, V. Kesminas, L. Ložys, I. Rashal, W. N. Tzeng & M. Žalakevičius, 2012. Investigations into genetic diversity of the perch inhabiting Ignalina nuclear power plant cooler and other inland water bodies of Lithuania on the basis of mtDNA analysis. Veterinarija ir Zootechnika 60: 7–15.

    Google Scholar 

  • Christensen, A. F., M. Skovrind, M. T. Olsen, H. Carl, P. Gravlund & P. R. Möller, 2016. Hatching success in brackish water of Perca fluviatilis eggs obtained from the western Baltic Sea. International Journal of Ichthyology 40: 133–138.

    Google Scholar 

  • Copp, G. H., P. G. Bianco, N. G. Bogutskaya, T. Erös, I. Falka, M. T. Ferreira, M. G. Fox, J. Freyhof, R. E. Gozlan, J. Grabowska, V. Kováč, R. Moreno-Amich, A. M. Naseka, M. Peňáz, M. Povž, M. Przybylski, M. Robillard, I. C. Russell, S. Stakėnas, S. Šumer, A. Vila-Gispert & C. Wiesner, 2005. To be, or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242–262.

    Article  Google Scholar 

  • Çiftci, Y. & İ. Okumuş, 2002. Fish population genetics and applications of molecular markers to fisheries and aquaculture: I- basic principles of fish population genetics. Turkish Journal of Fisheries and Aquatic Sciences 2: 145–155.

    Google Scholar 

  • Duftner, N., S. Koblmüller, S. Weiss, N. Medgyesy & C. Sturmbauer, 2005. The impact of stocking on the genetic structure of European grayling (Thymallus thymallus, Salmonidae) in two alpine rivers. Hydrobiologia 542: 121–129.

    Article  CAS  Google Scholar 

  • Dupanloup, I., S. Schneider & L. Excoffier, 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Biology and Evolution 11: 2571–2581.

    CAS  Google Scholar 

  • Elvira, B. & A. Almodóvar, 2001. Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. Journal of Fish Biology 59: 323–331.

    Article  Google Scholar 

  • Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

    CAS  Google Scholar 

  • Fu, Y. X. & W. H. Li, 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser, L. & G. R. Carvalho, 2008. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish and Fisheries 9: 333–362.

    Article  Google Scholar 

  • HELCOM, 2009. Biodiversity in the Baltic Sea – An integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea. Baltic Sea Environmental Proceedings No. 116B.

  • Khadher, S. B., P. Fontaine, S. Milla, J. F. Agnèse & F. Teletchea, 2016. Genetic characterization and relatedness of wild and farmed Eurasian perch (Perca fluviatilis): possible implications for aquaculture practices. Aquaculture Reports 3: 136–146.

    Article  Google Scholar 

  • Koskinen, M. T., J. Nilson, A. J. Veselov, A. G. Potutkin, E. Ranta & C. R. Primmer, 2002. Microsatellite data resolve phylogeographic patterns in European grayling, Thymallus thymallus, Salmonidae. Heredity 88: 391–401.

    Article  CAS  PubMed  Google Scholar 

  • Laikre, L., S. Palm & N. Ryman, 2005. Genetic population structure of fishes: implications for coastal zone management. Ambio 34: 111–119.

    Article  PubMed  Google Scholar 

  • Laikre, L., L. C. Larsson, A. Palmé, J. Charlier, M. Josefsson & N. Ryman, 2008. Potentials for monitoring gene level biodiversity: using Sweden as an example. Biodiversity and Conservation 17: 893–910.

    Article  Google Scholar 

  • Laikre, L., M. K. Schwartz, R. S. Waples, N. Ryman & The GeM Working Group, 2010. Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends in Ecology and Evolution 25: 520–529.

    Article  Google Scholar 

  • Leliūna, E., 2008. Nemuno baseino lašišų (Salmo salar L.) ir šlakių (S. trutta trutta L.) populiacijų fenotipinės ir genetinės struktūros ypatumai [Phenotype and genotype variation in salmon (Salmo salar L.) and sea trout (S. trutta trutta L.) populations of the Nemunas River basin]. PhD Thesis, Institute of Ecology of Vilnius University, Vilnius, Lithuania.

  • Leliūna, E., 2010. Assessment of genetic structure of sea trout (Salmo trutta trutta L.) populations in the Nemunas river tributaries based on mitochondrial DNA variation. Acta Zoologica Lituanica 20: 112–118.

    Article  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    CAS  PubMed  Google Scholar 

  • Lynch, M. & T. J. Crease, 1990. The analysis of population survey data on DNA sequence variation. Molecular Biology and Evolution 7: 377–394.

    CAS  PubMed  Google Scholar 

  • Mankiewitz-Boczek, J., A. Imsiridou, Z. Kaczkowski, A. Tsiora, N. Karaiskou, M. Łapińska, G. Minos & M. Zalewski, 2013. Genetic diversity of perch populations in three lowland reservoirs (Central Poland): perspective for fish sustainable management. Polish Journal of Ecology 61: 385–390.

    Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Book  Google Scholar 

  • Nesbø, C. L., M. O. Arab & K. S. Jakobsen, 1998a. Heteroplasmy, length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics 148: 1907–1919.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesbø, C. L., C. Magnhagen & K. S. Jakobsen, 1998b. Genetic differentiation among stationary and anadromous perch (Perca fluviatilis) in the Baltic Sea. Hereditas 129: 241–249.

    Article  Google Scholar 

  • Nesbø, C. L., T. Fossheim, L. A. Vøllestad & K. S. Jakobsen, 1999. Genetic divergence and phylogeographic relationships among European perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization. Molecular Ecology 8: 1387–1404.

    Article  PubMed  Google Scholar 

  • Nilsson, J., R. Gross, T. Asplund, O. Dove, H. Jansson, J. Kelloniemi, K. Kohlman, A. Löytynoja, E. E. Nielsen, T. Paaver, C. R. Primmer, S. Titov, A. Vasemägi, A. Veselov, T. Öst & J. Lumme, 2001. Matrilinear phylogeography of Atlantic salmon (Salmo salar L.) in Europe and postglacial colonization of the Baltic Sea area. Molecular Ecology 10: 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Olsson, J., K. Mo, A. B. Florin, T. Aho & N. Ryman, 2011. Genetic population structure of perch Perca fluviatilis along the Swedish coast of the Baltic Sea. Journal of Fish Biology 79: 122–137.

    Article  CAS  PubMed  Google Scholar 

  • Overton, J. L., M. Bayley, H. Paulsen & T. Wang, 2008. Salinity tolerance of cultured Eurasian perch, Perca fluviatilis L.: effects on growth and on survival as a function of temperature. Aquaculture 277: 282–286.

    Article  CAS  Google Scholar 

  • Pimakhin, A., J. Kouřil, V. Stejskal & J. Žák, 2015. The effect of geographical origin of perch (Perca fluviatilis L. 1758) populations on growth rates under natural and aquaculture conditions: a review. Journal of Applied Ichthyology 31: 56–63.

    Article  Google Scholar 

  • Polzin, T. & S. V. Daneshmand, 2003. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters 31: 12–20.

    Article  Google Scholar 

  • Ragauskas, A., D. Butkauskas & A. Sruoga, 2014. Investigation into genetic diversity of perch inhabiting Lake Drūkšiai and other water bodies of Lithuania on the basis of mtDNA analysis. Zoology and Ecology 24: 154–159.

    Article  Google Scholar 

  • Ralls, K., J. D. Ballou, M. R. Dudash, M. D. B. Eldridge, C. B. Fenster, R. C. Lacy, P. Sunnucks & R. Frankham, 2017. Call for a paradigm shift in the genetic management of fragmented populations. Conservation Letters 11: e12412.

    Article  Google Scholar 

  • Refseth, U. H., C. L. Nesbø, J. E. Stacy, L. A. Vøllestad, E. Fjeld & K. S. Jakobsen, 1998. Genetic evidence for different migration routes of freshwater fish into Norway revealed by analysis of current perch (Perca fluviatilis) populations in Scandinavia. Molecular Ecology 7: 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  • Rolli, J., S. Girardet, C. Monachon & C. Richard, 2014. Microsatellite analysis of perch (Perca fluviatilis) and its genetic authentication of geographical localization. Chimia 68: 726–731.

    Article  CAS  PubMed  Google Scholar 

  • Ruane, N. M., H. D. Rodger, L. J. McCarthy, D. Swords, M. Dodge, R. C. Kerr, K. Henshilwood & D. M. Stone, 2014. Genetic diversity and associated pathology of rhabdovirus infections in farmed and wild perch Perca fluviatilis in Ireland. Diseases of Aquatic Organisms 112: 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Säisä, M., M. Salminen, M.-L. Koljonen & J. Ruuhijärvi, 2010. Coastal and freshwater pikeperch (Sander lucioperca) populations differ genetically in the Baltic Sea basin. Hereditas 147: 205–214.

    Article  PubMed  Google Scholar 

  • Schmidt, T., M. Zagars, A. Roze & R. Schulz, 2017. Genetic diversity of a Daugava basin brown trout (Salmo trutta) brood stock. Knowledge & Management of Aquatic Ecosystems 418: 55.

    Article  Google Scholar 

  • Sruoga, A., I. Rashal, D. Butkauskas & L. Ložys, 2007. Variety of mtDNA haplotypes in the populations of the European perch (Perca fluviatilis) of the Curonian lagoon, the coastal zone of the Baltic sea and the Gulf of Riga. Proceedings of the Latvian Academy of Sciences 61: 20–30.

    Google Scholar 

  • Sruoga, A., D. Butkauskas & I. Rashal, 2008. Evaluation of genetic diversity of Perch (Perca fluviatilis) and Pikeperch (Sander lucioperca) populations from Curonian Lagoon and inshore waters of the Baltic Sea. Acta Biologica Universitatis Daugavpiliensis 8: 81–88.

    Google Scholar 

  • Swatdipong, A., C. R. Primmer & A. Vasemägi, 2010. Historical and recent genetic bottlenecks in European grayling, Thymallus thymallus. Conservation Genetics 11: 279–292.

    Article  Google Scholar 

  • Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., J. Dudley, M. Nei & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis (MEGA) software version 6.0. Molecular Biology and Evolution 24: 1596–1599.

    Article  CAS  Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vainikka, A., J. Koskimäki, P. T. Niemelä & R. Kortet, 2012. Composition of the Eurasian perch (Perca fluviatilis) catches in ice fishing: does capture order predict body size? Fisheries Research 115–116: 24–30.

    Article  Google Scholar 

  • Volta, P., A. Oggioni, R. Bettinetti & E. Jeppesen, 2011. Assessing lake typologies and indicator fish species for Italian natural lakes using past fish richness and assemblages. Hydrobiologia 671: 227–240.

    Article  Google Scholar 

  • Wennerström, L., E. Jansson & L. Laikre, 2017. Baltic Sea genetic biodiversity: current knowledge relating to conservation management. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 1069–1090.

    Article  Google Scholar 

  • Yang, X., C. Wang, J. Wang, Y. Ma, J. Yin & H. Wu, 2009. Isolation and characterization of 12 polymorphic microsatellite loci in Eurasian perch (Perca fluviatilis L.). Conservation Genetics Resources 1: 229–231.

    Article  Google Scholar 

  • Xiong, W., X. Sui, S. H. Liang & Y. Chen, 2015. Non-native freshwater fish species in China. Reviews in Fish Biology and Fisheries 25: 651–687.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Associate Editor Cecile Fauvelot and anonymous reviewers for their valuable input into the submitted manuscript. This research was supported by the Open Access to research infrastructure of the Nature Research Centre under the Lithuanian open access network initiative. The authors are grateful to the Lithuanian–Latvian–Taiwan (Republic of China) Mutual Fund for financial support for joint research projects among the countries. Sincere gratitude goes to the Lithuanian State Studies Foundation and Research Council of Lithuania for providing PhD scholarships in support of this study. The authors are indebted to Dr. C. L. Nesbø and Dr. K. S. Jakobsen for sharing their data. Special thanks go to Dr. L. Ložys, Dr. V. Kesminas, Dr. S. Stakėnas, Dr. V. Rakauskas, Dr. R. Staponkus, Dr. J. Birznieks, K. Skrupskelis and P. Satkevičius for generously providing perch samples, G. Vaitonis for help related to figure creation, Dr. M. L. Bianchini for suggestions that improved the quality of the manuscript and S. Stropaitytė, A. Pažusytė and E. Rudaitytė-Lukošienė for support and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adomas Ragauskas.

Additional information

Handling editor: Cécile Fauvelot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragauskas, A., Butkauskas, D., Prakas, P. et al. Complex phylogeographic relationships among the Eurasian perch (Perca fluviatilis) populations in the eastern part of the Baltic Sea Region. Hydrobiologia 847, 925–938 (2020). https://doi.org/10.1007/s10750-019-04156-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04156-2

Keywords

Navigation