Skip to main content
Log in

DFT investigation on the intramolecular and intermolecular proton transfer processes in 2-aminobenzothiazole (ABT) in the gas phase and in different solvents

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

DFT at the B3LYP/6-311++G(d,p) level of theory was performed to geometrically, thermodynamically, and kinetically investigate the tautomerism process of 2-aminobenzothiazole (ABT) with n water molecules (n = 1–3) and without water in the gas phase and in different solvents with a gradual increase in their dielectric constants. The geometries of the envisaged tautomers were optimized in the gas phase and in solution with the polarized continuum model (PCM). Equilibrium and rate constants for the forward and reverse intra-/intermolecular isolated and water-assisted tautomerism reactions were also calculated. The results suggest that the activation energy of the transition state of direct proton transfer in the isolated reaction is very high and that the rate constant is very slow (~ 10−24 s), reflecting that the reaction is thermodynamically unfavored, whereas the barrier differences between the transition states of the tautomers decrease gradually as the number of water molecules increases from one to three. Moreover, the rate constants of the proposed reactions are ~ 1023–1025 faster than those of the isolated reaction, and the water-assisted tautomerism paths can be performed quickly, especially with the assistance of two molecules of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Keri RS, Patil MR, Patil SA, Budagumpi S (2015) A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur J Med Chem 89:207–251

    CAS  PubMed  Google Scholar 

  2. Yadav P, Devprakash D, Senthilkumar G (2011) Benzothiazole: different methods of synthesis and diverse biological activities. International Journal of Pharmaceutical Sciences and Drug Research 3(1):01–07

  3. Gill RK, Rawal RK, Bariwal J (2015) Recent advances in the chemistry and biology of benzothiazoles. Arch Pharm 348:155–178

    CAS  Google Scholar 

  4. Azam MA, Suresh B (2012) Biological activities of 2-mercaptobenzothiazole derivatives: a review. Sci Pharm 80:789–823

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Aydın F, Arslan NB, Özdemir N (2017) Tautomerism in 4-chlorophenyl benzoylcarbamodithioate: experimental and DFT study. J Mol Struct 1137:233–239

    Google Scholar 

  6. Fabian WM (2014) Quantum chemical calculation of tautomeric equilibria. Tautomerism: Methods and Theories, pp 337–368

    Google Scholar 

  7. Raczyńska ED, Kosińska W, Ośmiałowski B, Gawinecki R (2005) Tautomeric equilibria in relation to pi-electron delocalization. Chem Rev 105:3561–3612

    PubMed  Google Scholar 

  8. Kim Y (1998) Dynamics and kinetic isotope effect for the double proton transfer in formamidine monohydrated complex using direct semiempirical dynamics calculation. J Phys Chem A 102:3025–3036

    CAS  Google Scholar 

  9. Kim Y, Lim S, Kim H-J, Kim Y (1999) Theoretical study of the double proton transfer in hydrogen-bonded complexes in the gas phase and in solution: prototropic tautomerization of formamide. J Phys Chem A 103:617–624

    CAS  Google Scholar 

  10. Wazzan N, Safi Z (2017) DFT calculations of the tautomerization and NLO properties of 5-amino-7-(pyrrolidin-1-yl)-2, 4, 4-trimethyl-1, 4-dihydro-1, 6-naphthyridine-8-carbonitrile (APNC). J Mol Struct 1143:397–404

    CAS  Google Scholar 

  11. Fares WW, Safi ZS (2014) Theoretical investigation of tautomerism stability of hydantoin in the gas phase and in the solution. Orient J Chem 30:1045–1054

    Google Scholar 

  12. Safi Z, Lamsabhi AM (2007) Gas-phase reactivity of 2, 7-dimethyl-[1, 2, 4]-triazepine thio derivatives toward Cu+ cation: A DFT study. J Phys Chem A 111:2213–2219

    CAS  PubMed  Google Scholar 

  13. Belova NV, Oberhammer H, Girichev GV, Shlykov SA (2008) Tautomeric properties and gas-phase structure of 3-chloro-2, 4-pentanedione. J Phys Chem A 112:3209–3214

    CAS  PubMed  Google Scholar 

  14. Raczyńska ED, Duczmal K, Darowska M (2005) Experimental (FT-IR) and theoretical (DFT-IR) studies of keto–enol tautomerism in pyruvic acid. Vib Spectrosc 39:37–45

    Google Scholar 

  15. Chahkandi B, Tayyari SF, Bakhshaei M, Chahkandi M (2013) Investigation of simple and water assisted tautomerism in a derivative of 1, 3, 4-oxadiazole: a DFT study. J Mol Graph Model 44:120–128

    CAS  PubMed  Google Scholar 

  16. Safi ZS, Al Hasanat SJ, Wazzan NA (2018) DFT investigation of the amino/imino proton transfer process of 2-amino-2-oxazolin-4-one in gas phase and solution. J Theor Comput Chem 17:1850004

    Google Scholar 

  17. Ball P, Nicholls C (1982) Azo-hydrazone tautomerism of hydroxyazo compounds—a review. Dyes Pigments 3:5–26

    CAS  Google Scholar 

  18. Antonov L, Kawauchi S, Satoh M, Komiyama J (1999) Ab initio modeling of the solvent influence on the azo-hydrazone tautomerism. Dyes Pigments 40:163–170

    CAS  Google Scholar 

  19. Sahu M, Saha MB, Bera SC (1995) Azo-hydrazo tautomerization and cis-trans isomerization of 2-carboxy-2′-hydroxy-4′-methyl azobenzene. J Photochem Photobiol A Chem 89:19–24

    CAS  Google Scholar 

  20. Broo A, Holmén A (1996) Ab initio MP2 and DFT calculations of geometry and solution tautomerism of purine and some purine derivatives. Chem Phys 211:147–161

    CAS  Google Scholar 

  21. Elguero J, Katritzky AR, Denisko OV (2000) Prototropic tautomerism of heterocycles: heteroaromatic tautomerism-general overview and methodology. Adv Heterocycl Chem 76:P1–P84

    Google Scholar 

  22. Minkin VI, Garnovskii AD, Elguero J, Katritzky AR, Denisko OV (2000) Tautomerism of heterocycles: five-membered rings with two or more heteroatoms. Adv Heterocycl Chem 76:P157–P323

    Google Scholar 

  23. Hasanein AA, Senior SA (2011) DFT calculations of amine-imine tautomerism in some pyrimidine derivatives and their 1: 1 and 1: 2 complexes with water. Int J Quantum Chem 111:3993–4010

    CAS  Google Scholar 

  24. Forlani L, De Maria P (1982) Tautomerism of aminothiazoles. p K BH+ values of 2-aminothiazoles and of some model imines. J Chem Soc Perkin Trans 2:535–537

    Google Scholar 

  25. Yarlıgan S, Ogretir C, Csizmadia I, Acıkkalp E, Berber H, Arslan T (2005) An ab initio study on protonation of some substituted thiazole derivatives. J Mol Struct THEOCHEM 715:199–203

    Google Scholar 

  26. Nalini V, Desiraju G (1989) Tautomerism in thiazolethiones. Structure of 4-(3-nitrophenyl) thiazole-2 (3H)-thione. Acta Crystallogr Sect C: Cryst Struct Commun 45:1528–1530

    Google Scholar 

  27. Elroby SA (2016) Tautomerization, acidity, basicity, and stability of cyanoform: a computational study. Chem Cent J 10:20

    PubMed  PubMed Central  Google Scholar 

  28. Li Q-G, Xue Y, Yan G-S (2008) Water-assisted enol-to-keto tautomerism of a simple peptide model: a computational investigation. J Mol Struct THEOCHEM 868:55–64

    CAS  Google Scholar 

  29. Lutrus CK, Hagen DE, Salk SH (1993) Temperature and supersaturation dependent nucleation rates of heterogeneous water by molecular cluster model calculation. J Chem Phys 99:9962–9971

    CAS  Google Scholar 

  30. Shao Y, Yao L, Lin S-H (2009) On the calculation of rate constants of the small cyclic water cluster by anharmonic RRKM theory. Chem Phys Lett 478:277–282

    CAS  Google Scholar 

  31. Enchev V, Markova M, Angelova S (2007) Prototropic tautomerism in aqueous solution: combined and discrete/SCRF models. Chem Phys Res J 1:1–36

    Google Scholar 

  32. Enchev V, Markova N, Angelova S (2005) Ab initio study of 2, 4-substituted azolidines. II. Amino− imino tautomerism of 2-aminothiazolidine-4-one and 4-aminothiazolidine-2-one in water solution. J Phys Chem A 109:8904–8913

    CAS  PubMed  Google Scholar 

  33. Kakkar R, Sarma BK, Katoch V (2001) Theoretical study of the mechanism of proton transfer in tautomeric systems: alloxan. J Chem Sci 113:297–306

    CAS  Google Scholar 

  34. Ren Y, Li M, Wong N-B (2005) Prototropic tautomerism of imidazolone in aqueous solution: a density functional approach using the combined discrete/self-consistent reaction field (SCRF) models. J Mol Model 11:167–173

    CAS  PubMed  Google Scholar 

  35. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, G09W®. Gaussian Inc., Wallingford

    Google Scholar 

  36. Adrienko, G. (2015) ChemCraft, 1.8 (build 445).

  37. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  38. Becke AD (1993). J Chem Phys 98:5648

    CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    CAS  Google Scholar 

  40. Li X, Frisch MJ (2006) Energy-represented direct inversion in the iterative subspace within a hybrid geometry optimization method. J Chem Theory Comput 2:835–839

    CAS  PubMed  Google Scholar 

  41. Babu NS (2013) Theoretical study of stability, tautomerism, equilibrium constants (pKT) of 2-thiouracil in gas phase and different solvents (water and acetonitrile) by the density functional theory method. Am Chem Sci J 3:137–150

    Google Scholar 

  42. Masel RI (2001) Chemical kinetics and catalysis. Wiley-Interscience, New York

    Google Scholar 

  43. Kenneth M, Holbrook A, Robertson SH (1996) Unimolecular Reactions. John Wiley & Sons, New York

    Google Scholar 

  44. Gilbert, R. G., and Smith, S. C. (1990) Theory of unimolecular and recombination reactions, Publishers’ Business Services [distributor]

  45. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Google Scholar 

  46. Miertus S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245

    CAS  Google Scholar 

  47. Lu J, Han B, Yan H (1999) Thermodynamic studies of chemical equilibrium in supercritical carbon dioxide-cosolvent solutions using UV-Vis spectroscopy. J Supercrit Fluids 15:135–143

    CAS  Google Scholar 

  48. Lammertsma K, Prasad BV (1994) Imine. dblharw. enamine tautomerism. J Am Chem Soc 116:642–650

    CAS  Google Scholar 

  49. Fazaeli R, Monajjemi M, Ataherian F, Zare K (2002) Solvent effects on relative stabilities and 14N NMR shielding of cytosine tautomers: continuous set of gauge transformation calculation using polarizable continuum model. J Mol Struct THEOCHEM 581:51–58

    CAS  Google Scholar 

  50. Loerting T, Liedl KR (2001) Water-mediated proton transfer: a mechanistic investigation on the example of the hydration of sulfur oxides. J Phys Chem A 105:5137–5145

    CAS  Google Scholar 

  51. Macernis M, Kietis B, Sulskus J, Lin S, Hayashi M, Valkunas L (2008) Triggering the proton transfer by H-bond network. Chem Phys Lett 466:223–226

    CAS  Google Scholar 

  52. Chen P-T, Wang C-C, Jiang J-C, Wang H-K, Hayashi M (2011) Barrierless proton transfer within short protonated peptides in the presence of water bridges A density functional theory study. J Phys Chem B 115:1485–1490

    CAS  PubMed  Google Scholar 

  53. Ahn D-S, Lee S, Kim B (2004) Solvent-mediated tautomerization of purine: single to quadruple proton transfer. Chem Phys Lett 390:384–388

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (130 - 217 - D1440). The authors, therefore, gratefully acknowledge the DSR technical and financial support. The authors acknowledge King Abdulaziz University’s High-Performance Computing Centre (Aziz Supercomputer) (http://hpc.kau.edu.sa) for supporting the computation for the work described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuha Wazzan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazzan, N., Safi, Z., Al-Barakati, R. et al. DFT investigation on the intramolecular and intermolecular proton transfer processes in 2-aminobenzothiazole (ABT) in the gas phase and in different solvents. Struct Chem 31, 243–252 (2020). https://doi.org/10.1007/s11224-019-01395-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01395-w

Keywords

Navigation