Skip to main content
Log in

Synthesis, molecular modeling, and pharmacological evaluation of new 2-substituted benzoxazole derivatives as potent anti-inflammatory agents

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present work, 2-substituted benzoxazole derivatives were synthesized from 2-(benzo[d]oxazol-2-yl) aniline. All the synthesized compounds were purified and characterized by 1H NMR, 13C NMR, and mass spectroscopy. All the compounds were pharmacologically evaluated for its in vitro anti-inflammatory efficacy using membrane stabilization and proteinase inhibitory methods. In addition to this, in silico molecular docking studies were carried out to predict the binding affinity of the synthesized benzoxazole derivatives with prostaglandin H2 synthase (PGHS) protein and trypsin enzyme. The results obtained from in vitro anti-inflammatory studies showed that compound 3, 4, and 6a showed good efficacy with percentage inhibition of 74.26 ± 1.04, 80.16 ± 0.24, and 70.24 ± 0.68 for membrane stabilization activity 80.19 ± 0.05, 85.30 ± 1.04, and 75.68 ± 1.28 towards proteinase inhibitory efficacy at a concentration of 100 μg/mL which was on par to that of standards aceclofenac and etodolac. Molecular docking analysis showed that compounds 3 and 4 possess good binding affinity towards PGHS protein with a docking score of − 9.4 and − 9.3 kcal/mol respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sondhi SM, Singh N, Kumar A, Lozach O, Meijer L (2006). Bioorg Med Chem 14:3758–3765

    CAS  PubMed  Google Scholar 

  2. Vinsova J, Cermakova K, Tomeckova A, Ceckova M, Jampilek J, Cermak P, Kunes J, Dolezal M, Staud F (2006). Bioorg Med Chem 14:5850–5865

    CAS  PubMed  Google Scholar 

  3. Gong B, Hong F, Kohm C, Bonham L, Klein P (2004). Bioorg Med Chem Lett 14:1455–1459

    CAS  PubMed  Google Scholar 

  4. Jayanna ND, Vagdevi HM, Dharshan JC, Kekuda TRP, Hanumanthappa BC, Gowdarshivannanavar BC (2013). Journal of Chemistry 864385:1–9

    Google Scholar 

  5. Taki M, Wolford JL, Halloran TV (2004). J Am Chem Soc 128:712–713

    Google Scholar 

  6. Reena M, Kiran G, Rajyalakshmi G, Venkateshwa RJ, Sarangapani M (2010). Acta Pharm Sin 45:730–734

    CAS  Google Scholar 

  7. Kapileswar S, Sanjeev KG, Raj K, Priyank P, Vachan SM, Rohit G (2014). ACS Med Chem Lett 5:512–516

    Google Scholar 

  8. Serder U, Sultan NB, Esra K, Erdem Y (2003). Arch Pharm 336:310–321

    Google Scholar 

  9. Devinder K, Melissa RJ, Michael BR, Sean MK (2002). Bioorg Med Chem 10:3997–4004

    Google Scholar 

  10. Raok J, So Yean P (2004). Arch Pharm Res 27:1099–1105

    Google Scholar 

  11. Samia MR, Fawzia AA, Soad AME, Mona ME, Manal AS (2005). Eur J Med Chem 40:949–959

    Google Scholar 

  12. Ozlem T, Ilkay O, Esin S, Ismail Y, Nejat U (1998). I L Pharmaco 53:337–345

    Google Scholar 

  13. Youssel MA, Sherif SMA, Elkady AMA, Hamouda SES (2010). J Am Sci 6:1080–1090

    Google Scholar 

  14. Katsura Y, Inoque Y, Niishino S, Tomoi M, Itoh H, Takasugi H (1992). Chem Pharm Bull 40:1424–1438

    CAS  PubMed  Google Scholar 

  15. Siddiqui N, Sarafroz M, Alam MM, Ahsan W (2008) Acta Paloniae Pharmaceutica- drug research, vol 65, pp 441–449

    Google Scholar 

  16. Jalmira M, Rudi O, Marta CJ (2010). J Med Chem 53:241–253

    Google Scholar 

  17. Klimensova V, Koci J, Waisser K, Koustova J, Dahse M (2002). Bioorg Med Chem Lett 12:3275–3278

    Google Scholar 

  18. Gurvinder S, Maninderjit K, Chander M, Saurabh P (2013). Indo Am J Pharmaceutical Res 3:6113–6118

    Google Scholar 

  19. Saritha G, Manne PK, Ambati PS, Bommalla S, Ganneboina JM, Chikoti A (2012). In J Biopharmaceutics 3:50–54

    Google Scholar 

  20. Mccarthy DM (1999). Am J Med 107:37S–47S

    CAS  PubMed  Google Scholar 

  21. Richy F, Bruyere O, Ethgen O, Rabenda V, Bouvenot G, Audran M, Herrero-Beaumont G, Moore A, Eliakim R, Hiam M (2004). J Reginster Ann Rheum Dis 63:759–766

    CAS  Google Scholar 

  22. FlizGerald GA, Patrono C (2001). New Engl J Med 345:433–442

    Google Scholar 

  23. Ilkay O, Ozlem T, Ismail Y, Esin S, Nurten A (1998). Eur J Pharm Sci 7:153–160

    Google Scholar 

  24. Balaswamy G, Srinivas K, Pradeep P, Sarangapani M (2012). Int J Chem Sci 10:619–626

    CAS  Google Scholar 

  25. Silpa PS, Anny M, Jayakumar T, Suresh C, Cici M (2013). M Asian J Pharm Health Sci 3:661–670

    Google Scholar 

  26. Janardhan S, Balaswamy G, Sarangapani M (2011). Rasayan J Chem 3:588–598

    Google Scholar 

  27. Shrivastava B, Vandana S, Priyanka L (2011). Pharmacologyonline. 1:236–245

    Google Scholar 

  28. Olsen DB, Carroll SS, Culberson JC, Shafer JA, Kuo LC (1994). Nucleic Acids Res 22:1437–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghodsi GM, Alireza B, Monireh SN, Malihe H (2012). Eur J Chem 3:433–436

    Google Scholar 

  30. Flower RJ, Moncada S, Vane JR (1980) In: Gilman AG, Goodman LS, Gilman A (eds) The pharmacological basic oftherapeutics6th edn. Macmillan & Co, New York, pp 701–705

    Google Scholar 

  31. Sato S, Kajiura T, Noguchi M, Takehana K, Kobayashi T, Tsuji T (2001). J Antibiot 54:102–104

    CAS  PubMed  Google Scholar 

  32. Yalcin I, Oren I, Sener E, Akin A, Ucarturk N (1992). Eur. J. Med. Chem. 27:401–406

    Google Scholar 

  33. Boeckman RK, Charette AB, Asberom T, Johnston BH (1976). J Am Chem Soc 98:1573–1578

    Google Scholar 

  34. Yadav JS, Muralidhar B (1998). Tetrahedron Lett 39:2867–2868

    CAS  Google Scholar 

  35. Chang J, Zhao K, Pan S (2002). Tetrahedron Lett 43:951–954. https://doi.org/10.1007/s11224-019-01374-1

    Article  CAS  Google Scholar 

  36. Angajala G, Pavan P, Subashini R (2014). RSC Adv 4:51459–51470

    CAS  Google Scholar 

  37. Angajala G, Ramya R, Subashini R (2014). Acta Trop 135:19–26

    CAS  PubMed  Google Scholar 

  38. Southall NT, Dill KA, Haymet ADJ (2002). J Phys Chem B 106:521–533

    CAS  Google Scholar 

  39. Chandler D (2005). Nature 437:640–647

    CAS  PubMed  Google Scholar 

  40. Ball P (2008). Chem Rev 108:74–108

    CAS  PubMed  Google Scholar 

  41. Reiser A, Leyshon LJ, Saunders D, Mijovic MV, Bright A, Bogie J (1972). J Am Chem Soc 94:2414–2421

    CAS  Google Scholar 

  42. Fridkin SK, Gaynes RP (1999). Clin Chst Med 20:303–316

    CAS  Google Scholar 

  43. Kim JS, Sun Q, Gatto B, Yu C, Liu A, Liu LF, La voie EJ (1996). Bioorg Med Chem 4:621–630

    CAS  PubMed  Google Scholar 

  44. Perrin L, Rakik A, Yearly S, Baumbeger C, Kinloch-de Loies S, Pechiere M, Hirschel B (1996). AIDS 10:1233–1237

    CAS  PubMed  Google Scholar 

  45. Staszewski S, Massari FE, Kober A, Gohler R, Durr R, Anderson KW, Schneider CL, Waterburry JA, Bakshi KK, Taylor VI (1995). Infect Dis Ther 171:1159–1165

    CAS  Google Scholar 

  46. Yalcin I, Ener ES, Ozden T, Ozden S, Akin A (1990). Eur J Med Chem 25:705–708

    CAS  Google Scholar 

  47. Hubschwerlen C, Pflieger P, SPecklin JL, Gubernator K, Gmunder H, Angehrn P, Kompis I (1996). J Med Chem 39:3375–3384

    Google Scholar 

  48. Reynolds MB, DeLuca M, Kerwin S (1999). Bioorg Chem 27:326–337

    CAS  Google Scholar 

  49. Mensor L, Menezes FS, Leitao G, Reis AS, dos Santos TC, Coube CS, Leitao SG (2001). Phytother Res 45:127–130

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the management of Kalasalingam Academy of Research and Education (KARE),  Krishnankoil, Tamil Nadu, India, for their constant encouragement and support and providing all the necessary facilities for carrying out this study. The authors also thank Vellore Institute of Technology DST-VIT-FIST, SIF-VIT for carrying out NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangadhara Angajala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angajala, G., Subashini, R. Synthesis, molecular modeling, and pharmacological evaluation of new 2-substituted benzoxazole derivatives as potent anti-inflammatory agents. Struct Chem 31, 263–273 (2020). https://doi.org/10.1007/s11224-019-01374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01374-1

Keywords

Navigation