Skip to main content
Log in

Enhancement of carbonate apatite scaffold properties with surface treatment and alginate and gelatine coating

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Carbonate apatite (CO3Ap) scaffolding has been widely used for bone repair and replacement due to its excellent osteoconductivity and resorbability in bone defects. However, the application of the porous scaffold has been limited by its brittleness. Here, CO3Ap scaffolds coated with 1, 3 and 5 wt% of sodium alginate (SA) and bovine gelatine (BG) were fabricated to improve the mechanical properties of the porous scaffold. Limited studies have been done on a CO3Ap scaffold coated with a natural polymer layer. Here, a CO3Ap scaffold was fabricated through the phase transformation from β-tricalcium phosphate (β-TCP) to CO3Ap using a hydrothermal method. Fourier-transform infrared (FTIR) analysis confirmed the presence of both SA and BG functional groups on the CO3Ap scaffold. Five wt% of SA and BG improved the compressive strength of the uncoated CO3Ap scaffold by 34% and 46%, respectively. The SA coating was found to enhance the compressive strength of the CO3Ap scaffold compared to the BG coating due to its high viscosity. Furthermore, the compressive strength of the scaffold increased by 40% after undergoing a silanization process and being coated with SA. These results indicate that the use of a silane treatment improved the chemical bonding between the CO3Ap scaffold and SA coating. This process increased the adhesion between the SA coating and the scaffold and improved the compressive strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.V. Dorozhkin, Calcium orthophosphates as bioceramics: state of the art. J. Funct. Biomater. 1, 22–107 (2010). https://doi.org/10.3390/jfb1010022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. N. Ahmad, K. Tsuru, M.L. Munar, M. Maruta, S. Matsuya, K. Ishikawa, Effect of precursor’s solubility on the mechanical property of hydroxyapatite formed by dissolution-precipitation reaction of tricalcium phosphate. Dent. Mater. J. 31, 995–1000 (2012). https://doi.org/10.4012/dmj.2012-176

    Article  CAS  PubMed  Google Scholar 

  3. Y. Sugiura, K. Tsuru, K. Ishikawa, Fabrication of carbonate apatite foam based on the setting reaction of α-tricalcium phosphate foam granules. Ceram. Int. 42, 204–210 (2015). https://doi.org/10.1016/j.ceramint.2015.08.081

    Article  CAS  Google Scholar 

  4. Y. Kang, A. Scully, D.A. Young, S. Kim, H. Tsao, M. Sen, Y. Yang, Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications. Eur. Polym. J. 47, 1569–1577 (2011). https://doi.org/10.1016/j.eurpolymj.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. Furusawa, T. Minatoya, T. Okudera, Y. Sakai, T. Sato, Y. Matsushima, H. Unuma, Enhancement of mechanical strength and in vivo cytocompatibility of porous β-tricalcium phosphate ceramics by gelatin coating. Int. J. Implant Dent. 2, 4 (2016). https://doi.org/10.1186/s40729-016-0037-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. J. Wang, D. Li, T. Li, J. Ding, J. Liu, B. Li, X. Chen, Gelatin tight-coated poly(lactide-co-glycolide) scaffold incorporating rhBMP-2 for bone tissue engineering. Materials (Basel) 8, 1009–1026 (2015). https://doi.org/10.3390/ma8031009

    Article  CAS  Google Scholar 

  7. S.-M. Kim, S.-A. Yi, S.-H. Choi, K.-M. Kim, Y.-K. Lee, Gelatin-layered and multi-sized porous β-tricalcium phosphate for tissue engineering scaffold. Nanoscale Res. Lett. 7, 78 (2012). https://doi.org/10.1186/1556-276X-7-78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. X.H. Yong, M.I. Mazlam, N. Ahmad, Fabrication and characterization of porous biphasic β-tricalcium phosphate/carbonate apatite alginate coated scaffolds. Ceram. Int. 44, 9499–9505 (2018). https://doi.org/10.1016/j.ceramint.2018.02.168

    Article  CAS  Google Scholar 

  9. N.A.S. Zairani, M. Jaafar, N. Ahmad, K. Abdul Razak, Fabrication and characterization of porous β-tricalcium phosphate scaffolds coated with alginate. Ceram. Int. 42, 5141–5147 (2016). https://doi.org/10.1016/j.ceramint.2015.12.034

    Article  CAS  Google Scholar 

  10. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  11. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, S. Ramakrishna, Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29, 4532–4539 (2008). https://doi.org/10.1016/j.biomaterials.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  12. K. Ghosal, C. Agatemor, Z. Špitálsky, S. Thomas, E. Kny, Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem. Eng. J. 358, 1262–1278 (2019). https://doi.org/10.1016/j.cej.2018.10.117

    Article  CAS  Google Scholar 

  13. H. Alenezi, M.E. Cam, M. Edirisinghe, Experimental and theoretical investigation of the fluid behavior during polymeric fiber formation with and without pressure. Appl. Phys. Rev. 6, 041401 (2019). https://doi.org/10.1063/1.5110965

    Article  CAS  Google Scholar 

  14. G. Li, L. Zhang, C. Wang, X. Zhao, C. Zhu, Y. Zheng, Y. Wang, Y. Zhao, Y. Yang, Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration. Carbohydr. Polym. 101, 718–726 (2014). https://doi.org/10.1016/j.carbpol.2013.09.064

    Article  CAS  PubMed  Google Scholar 

  15. O.G. Cisneros-Pineda, W. Herrera Kao, M.I. Loría-Bastarrachea, Y. Veranes-Pantoja, J.V. Cauich-Rodríguez, J.M. Cervantes-Uc, Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations. Mater. Sci. Eng. C. 40, 157–163 (2014). https://doi.org/10.1016/j.msec.2014.03.064

    Article  CAS  Google Scholar 

  16. S. Joughehdoust, A. Behnamghader, M. Imani, M. Daliri, A.H. Doulabi, E. Jabbari, A novel foam-like silane modified alumina scaffold coated with nano-hydroxyapatite-poly(ε-caprolactone fumarate) composite layer. Ceram. Int. 39, 209–218 (2013). https://doi.org/10.1016/j.ceramint.2012.06.011

    Article  CAS  Google Scholar 

  17. J. Venkatesan, I. Bhatnagar, P. Manivasagan, K.-H. Kang, S. Kim, Alginate composites for bone tissue engineering: a review. Int. J. Biol. Macromol. 72C, 269–281 (2014). https://doi.org/10.1016/j.ijbiomac.2014.07.008

    Article  CAS  Google Scholar 

  18. T. Nguyen, B. Lee, Fabrication and characterization of cross-linked gelatin. J. Biomed. Sci. Eng. 3, 1117–1124 (2010). https://doi.org/10.4236/jbise.2010.312145

    Article  CAS  Google Scholar 

  19. F. Darus, M. Jaafar, N. Ahmad, Preparation of carbonate apatite scaffolds using different carbonate solution and soaking time. Process. Appl. Ceram. 13, 139–148 (2019)

    Article  CAS  Google Scholar 

  20. L.J. Yang, Y.C. Ou, The micro patterning of glutaraldehyde (GA)-crosslinked gelatin and its application to cell-culture. Lab Chip 5, 979–984 (2005). https://doi.org/10.1039/b505193b

    Article  CAS  PubMed  Google Scholar 

  21. L.T. Bang, K. Tsuru, M. Munar, K. Ishikawa, R. Othman, Mechanical behavior and cell response of PCL coated α-TCP foam for cancellous-type bone replacement. Ceram. Int. 39, 5631–5637 (2013). https://doi.org/10.1016/j.ceramint.2012.12.079

    Article  CAS  Google Scholar 

  22. W. Li, H. Wang, Y. Ding, E.C. Scheithauer, O.-M. Goudouri, A. Grünewald, R. Detsch, S. Agarwal, A.R. Boccaccini, Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. J. Mater. Chem. B. 3, 3367–3378 (2015). https://doi.org/10.1039/C5TB00044K

    Article  CAS  PubMed  Google Scholar 

  23. F. Darus, R.M. Isa, N. Mamat, M. Jaafar, Techniques for fabrication and construction of three-dimensional bioceramic scaffolds: effect on pores size, porosity and compressive strength. Ceram. Int. 44, 18400–18407 (2018). https://doi.org/10.1016/j.ceramint.2018.07.056

    Article  CAS  Google Scholar 

  24. L.T. Bang, S. Ramesh, J. Purbolaksono, B.D. Long, H. Chandran, R. Othman, Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate. Biomed. Mater. 10, 45011 (2015). https://doi.org/10.1088/1748-6041/10/4/045011

    Article  CAS  Google Scholar 

  25. I.Y. Pieters, N.M.F. Van den Vreken, H.A. Declercq, M.J. Cornelissen, R.M.H. Verbeeck, Carbonated apatites obtained by the hydrolysis of monetite: influence of carbonate content on adhesion and proliferation of MC3T3-E1 osteoblastic cells. Acta Biomater. 6, 1561–1568 (2010). https://doi.org/10.1016/j.actbio.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  26. S. Kannan, S.I. Vieira, S.M. Olhero, P.M.C. Torres, S. Pina, O.A.B. Da Cruz, E. Silva, J.M.F. Ferreira, Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomater. 7, 1835–1843 (2011). https://doi.org/10.1016/j.actbio.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  27. M. Nagpal, S.K. Singh, D. Mishra, Synthesis characterization and in vitro drug release from acrylamide and sodium alginate based superporous hydrogel devices. Int. J. Pharm. Investig. 3, 88–94 (2013). https://doi.org/10.4103/2230-973X.119215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Adzila, N. Azimahmustaffa, The effect of sodium alginate on the properties of hydroxyapatite. Procedia Eng. 184, 442–448 (2017). https://doi.org/10.1016/j.proeng.2017.04.115

    Article  CAS  Google Scholar 

  29. D. Das, S. Zhang, I. Noh, Synthesis and characterizations of alginate- α-tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial. Biomed. Mater. 13, 025008 (2018). https://doi.org/10.1088/1748-605X/aa8fa1

    Article  PubMed  Google Scholar 

  30. S. Hermanto, L.O. Sumarlin, W. Fatimah, Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. J. Food Pharm. Sci. 1, 68–73 (2013)

    Google Scholar 

  31. S. Dorozhkin, T. Ajaal, Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 223, 459–470 (2009). https://doi.org/10.1243/09544119JEIM513

    Article  CAS  Google Scholar 

  32. G. Hannink, J.J.C. Arts, Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury 42, S22–S25 (2011). https://doi.org/10.1016/j.injury.2011.06.008

    Article  PubMed  Google Scholar 

  33. N.H. Nordin, Z. Ahmad, Monitoring chemical changes on the surface of borosilicate glass covers during the silanisation process. J. Phys. Sci. 26, 11–22 (2015)

    CAS  Google Scholar 

  34. J. Lee, I.K. Kim, T.G. Kim, Y.H. Kim, J.C. Park, Y.J. Kim, S.Y. Choi, M.Y. Park, Biocompatibility and strengthening of porous hydroxyapatite scaffolds using poly(l-lactic acid) coating. J. Porous Mater. 20, 719–725 (2013). https://doi.org/10.1007/s10934-012-9646-2

    Article  CAS  Google Scholar 

  35. A.L. Torres, V.M. Gaspar, I.R. Serra, G.S. Diogo, R. Fradique, A.P. Silva, I.J. Correia, Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater. Sci. Eng. C 33, 4460–4469 (2013). https://doi.org/10.1016/j.msec.2013.07.003

    Article  CAS  Google Scholar 

  36. J.J. Li, E.S. Gil, R.S. Hayden, C. Li, S.I. Roohani-Esfahani, D.L. Kaplan, H. Zreiqat, Multiple silk coatings on biphasic calcium phosphate scaffolds: effect on physical and mechanical properties and in vitro osteogenic response of human mesenchymal stem cells. Biomacromolecules 14, 2179–2188 (2013). https://doi.org/10.1021/bm400303w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Sadiasa, M.S. Kim, B.T. Lee, Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering. J. Drug Target. 21, 719–729 (2013). https://doi.org/10.3109/1061186X.2013.811512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Trans Disciplinary Research Grant Scheme (TRGS), Grant No. 6761004 for financial support and also School of Materials and Mineral Resources Engineering Campus for laboratory cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariatti Jaafar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darus, F., Jaafar, M. Enhancement of carbonate apatite scaffold properties with surface treatment and alginate and gelatine coating. J Porous Mater 27, 831–842 (2020). https://doi.org/10.1007/s10934-019-00848-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00848-1

Keywords

Navigation