Skip to main content

Advertisement

Log in

Synthesis, characterization, magnetic and antimicrobial properties of silver chromite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel nanostructured silver chromite with the chemical formula Ag2Cr2O4 was synthesized at 400 °C by simple, cost effective, flash auto-combustion method. The average crystallite size was found to be 76.6 nm by crystallographic study of X-ray analysis (XRD) which also showed single-phase formation with spinel cubic structure. The formation of the sample was assured by measuring the Fourier transform infrared (FTIR) spectrum and the elemental study using energy dispersive X-ray (EDX) measurement. The field emission scanning electron microscopy (FESEM) and the atomic force microscopy (AFM) were studied which showed a spherical interlinked behavior with aggregations of the grains. The M–H curve showed an exchange bias which gave a slight horizontal shift in the curve. The obtained data extracted from the magnetic properties recommended the suitability of Ag2Cr2O4 nanoparticles to be applied in information storage devices, MRAM, and sensor devices. Moreover, this is the first study to synthesize and analyze the characterization and antimicrobial properties of Ag2Cr2O4 nanoparticles at 400 °C. A fascinating behavior appeared by studying the antimicrobial properties which gave a strong antibacterial efficacy against S. aureus and B. subtilis (G +) and also against P. aeruginosa (G −) bacterial species. Also, it gave a strong antifungal efficacy against A. flavus (Aspergillus) and C. albicans (Candida) fungal species. Thus, Ag2Cr2O4 nanoparticles at 400 °C could be an attractive and an alternative antifungal and antibacterial nanomaterial that open new paths for new alternative nanomaterial chemotherapy against different bacteria and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.B. Kale, S.B. Somvanshi, M.N. Sarnaik, S.D. More, S.J. Shukla, K.M. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. AIP Conf. Proc. 1953, 030193 (2018). https://doi.org/10.1063/1.5032528

    Article  CAS  Google Scholar 

  2. M. Amami, F. Jlaiel, P. Strobel, S.A. Ben, Structural, magnetic and electric properties of delafossite-type oxide, Cu 1-x Ag x CrO 2 (0 %3c x %3c 0.5). IOP Conf. Ser. Mater. Sci. Eng. 13, 12001 (2010). https://doi.org/10.1088/1757-899X/13/1/012001

    Article  CAS  Google Scholar 

  3. S.H. Kim, H.S. Lee, D.S. Ryu, S.J. Choi, D.S. Lee, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. J. Microbial. Biotechnol. 39, 77–85 (2011)

    CAS  Google Scholar 

  4. A.A.H. El-Bassuony, H.K. Abdelsalam, Fascinating study of the physical properties of a novel nanometric delafossite for biomedical applications. J. Miner. Met. Mater. Soc. 71, 1866–1873 (2019). https://doi.org/10.1007/s11837-019-03415-w

    Article  CAS  Google Scholar 

  5. J.E. Clayton, D.P. Cann, N. Ashmore, Synthesis and processing of AgInO delafossite compounds by cation exchange reactions. Thin Solid Films 411, 140–146 (2002). https://doi.org/10.1016/S0040-6090(02)00203-1

    Article  CAS  Google Scholar 

  6. R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B.U. Nair, Interaction of DNA with [Cr (Schiff base)(H2O)2]ClO4. Biochim. Biophys. Acta 1475(2), 157–162 (2000)

    Article  CAS  Google Scholar 

  7. H.Y. Shrivastava, B.U. Nair, Chromium(III)-mediated structural modification of glycoprotein: impact of the ligand and the oxidants. Biochem. Biophys. Res. Commun. 285(4), 915–920 (2001)

    Article  CAS  Google Scholar 

  8. H.Y. Shrivastava, B.U. Nair, Protein degradation by per- oxide catalyzed by chromium(III): role of coordinated ligand. Biochem. Biophys. Res. Commun. 270(3), 749–754 (2000)

    Article  CAS  Google Scholar 

  9. M.H. Maklad, N.M. Shash, H.K. Abdelsalam, Synthesis, characterization and magnetic properties of nanocrystalline Ni1−xZnxFe2O4 spinels via coprecipitation precursor. Int. J. Mod. Phys. B 28(25), 450165 (2014). https://doi.org/10.1142/S0217979214501653

    Article  CAS  Google Scholar 

  10. H.K. Abdelsalam, Enhancing the structural and spectroscopic properties of Cr3+ ion-doped Ni/Cd/Zn nanoferrite to be applied to industrial applications. J. Supercond. Nov. Magn. 31, 4063–4077 (2018). https://doi.org/10.1007/s10948-018-4689-5

    Article  CAS  Google Scholar 

  11. A.A.H. El-Bassuony, H.K. Abdelsalam, Giant exchange bias of hysteresis loops on Cr3+-doped Ag nanoparticles. J. Supercond. Nov. Magn. 31, 1539–1544 (2018). https://doi.org/10.1007/s10948-017-4340-x

    Article  CAS  Google Scholar 

  12. A.A.H. El-Bassuony, H.K. Abdelsalam, Attractive improvement in structural, magnetic, optical, and antimicrobial activity of silver delafossite by Fe/Cr Doping. J Supercond Nov Magn. 31, 3691–3703 (2018). https://doi.org/10.1007/s10948-018-4627-6

    Article  CAS  Google Scholar 

  13. A.A.H. El-Bassuony, H.K. Abdelsalam, Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-017-8506-x

    Article  Google Scholar 

  14. F. Özel, O. Karaagac, E. Tokay, F. Köçkar, H. Köçkar, A simple way to synthesize tartaric acid, ascorbic acid and their mixture coated superparamagnetic iron oxide nanoparticles with high saturation magnetisation and high stability against oxidation: characterizations and their biocompatibility studies. J. Magn. Magnet. Mater. 474, 654–660 (2019)

    Article  Google Scholar 

  15. A.A.H. El-Bassuony, H.K. Abdelsalam, Tailoring the structural, magnetic and antimicrobial activity of AgCrO2 delafossite via high annealing temperature. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08207-7

    Article  Google Scholar 

  16. A.A.H. El-Bassuony, H.K. Abdelsalam, Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloys Compd. 726, 1106–1118 (2017). https://doi.org/10.1016/j.jallcom.2017.08.087

    Article  CAS  Google Scholar 

  17. A.W. Bauer, W.M. Kirby, C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966)

    Article  CAS  Google Scholar 

  18. P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen. Math.-Phys. Klasse 2, 98–100 (1918)

    Google Scholar 

  19. A. Manohar, C. Krishnamoorthi, Site selective Cu2+ substitution in single crystal Fe3O4 biocompatible nanospheres by solvothermal reflux method. J. Crystal. Growth 473, 66–74 (2017)

    Article  CAS  Google Scholar 

  20. A. Manohar, V. Vijayakanth, R. Hong, Solvothermal refux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-02588-z

    Article  Google Scholar 

  21. A. Manohar, C. Krishnamoorthi, Low Curie-transition temperature and superparamagnetic nature of Fe3O4 nanoparticles prepared by colloidal nanocrystal synthesis. Mater. Chem. Phys. 192, 235–243 (2017)

    Article  CAS  Google Scholar 

  22. A. Manohar, C. Krishnamoorthi, Structural, optical, dielectric and magnetic properties of CaFe2O4 nanocrystals prepared by solvothermal reflux method. J. Alloys Compd. 722(25), 818–827 (2017)

    Article  CAS  Google Scholar 

  23. A.A.H. El-Bassuony, Tuning the structural and magnetic properties on Cu/Cr nanoferrite using different rare-earth ions. J. Mater. Sci. 29, 3259–3269 (2018). https://doi.org/10.1007/s10854-017-8261-z

    Article  CAS  Google Scholar 

  24. N.E. Cipollini, B.L. Wu, S. Haig, J. Yamanis, Beneficiated lanthanum chromite for low temperature firing, US Patent 643,255 (1992)

  25. C. Chettapongsaphan, S. Charojrochkul, S. Assabumrungrat, N. Laosiripojana, Preparation of high surface area LaCrO3 for later application in solid oxide fuel cell (SOFC). Asian J. Energy Environ. 9(1/2), 101–119 (2008)

    Google Scholar 

  26. G. Stakkestad, J. Sjoblom, B. Grung, T. Sigvartsen, Surface chemistry of lanthanum chromite. II. Multivariate data modelling of the isoelectric point by the use of surface composition data achieved from X-ray photoelectron spectroscopy measurements, Colloid. Polym. Sci. 277, 174–183 (1999)

    Article  CAS  Google Scholar 

  27. A. Manohar, C. Krishnamoorthi, K. Chandra Babu Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal refux method. Appl. Phys. A 125, 477 (2019)

    Article  CAS  Google Scholar 

  28. B.K. Labde, M.C. Sable, N.R. Shamkuwar, Structural and infra-red studies of Ni1+xPbxFe2-2xO4 system. Mater. Lett. 57(11), 1651–1655 (2003)

    Article  CAS  Google Scholar 

  29. X.D. Ma, H.W. Sun, H. He, M.H. Zheng, Competitive reaction during decomposition of hexachlorobenzene over ultrafine Ca-Fe composite oxide catalyst. Catal. Lett. 119(1–2), 142–147 (2017)

    Google Scholar 

  30. C.K. Materese, D.P. Cruikshank, S.A. Sandford, H. Imanaka, M. Nuevo, D.W. White, Ice chemistry on outer solar system bodies: carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV photolysis of N2:CH4:CO- containing ices. Astrophys. J. 788, 111 (2014)

    Article  Google Scholar 

  31. M. Khatami, H. Alijani, I. Sharifi, F. Sharifi, S. Pourseyedi, S. Kharazi, M.A.L. Nobre, M. Khatami, Leishmanicidal activity of biogenic Fe3O4 nanoparticles. Sci. Pharm. 85(4), 36 (2017). https://doi.org/10.3390/scipharm85040036

    Article  CAS  Google Scholar 

  32. Z.H. Mbhele, M.G. Salemane, C.G.C.E. Van Sittert, J.M. Nedeljkovic, V. Djokovic, A.S. Luyt, Chem. Mater. 15, 5019 (2003)

    Article  CAS  Google Scholar 

  33. S. Krimm, J. Bandekar, Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Protein Chem. 38, 181–364 (1986)

    Article  CAS  Google Scholar 

  34. A.S. Roy, A.K. Dinda, N.K. Pandey, S. Dasgupta, Effects of urea, metal ions and surfactants on the binding of baicalein with bovine serum albumin. J. Pharm. Anal. 6, 256–267 (2016)

    Article  Google Scholar 

  35. AA. El-Bassuony, A comparative study of physical properties of Er and Yb nanophase ferrite for industrial application. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-017-4543-1

    Article  Google Scholar 

  36. U. Naresh, R. Jeevan Kumar, K. Chandra Babu Naidu, Hydrothermal synthesis of barium copper ferrite nanoparticles: nanofiber formation, optical, and magnetic properties. Mater. Chem. Phys. 236, 121807 (2019)

    Article  CAS  Google Scholar 

  37. D. Kothandana, R. Jeevan Kumar, M. Prakashc, K. Chandra Babu Naidu, Structural, morphological and optical properties of Ba1-xCuxTiO3 (X = 0.2, 0.4, 0.6, 0.8) nanoparticles synthesized by hydrothermal method. Mater. Chem. Phys. 215, 310–315 (2018)

    Article  Google Scholar 

  38. N. Raghuram, T. Subba Rao, K. Chandra Babu Naidu, Investigations on functional properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x = 0.0 − 0.8) nanoparticles. Mater. Sci. Semicond. Process. 94, 136–150 (2019)

    Article  CAS  Google Scholar 

  39. A.A. El-Bassuony, Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci. Mater. Electron 28, 14489–14498 (2017). https://doi.org/10.1007/s10854-017-7312-9

    Article  CAS  Google Scholar 

  40. A.A.H. El-Bassuony, H.K. Abdelsalam, Fascinating study of the physical properties of a novel nanometric delafossite for biomedical applications. J. Miner. Met. Mater. Soc. (2019). https://doi.org/10.1007/s11837-019-03415-w

    Article  Google Scholar 

  41. A. Du, Magnetic hysteresis loop in antiferromagnetically coupled bilayer structures. Phys. Stat. Sol. (b) 245(4), 740–744 (2008). https://doi.org/10.1002/pssb.200743173

    Article  CAS  Google Scholar 

  42. H. Presting, U. Ko, Future nanotechnology developments for automotive applications. Mater. Sci. Eng. C 23, 737–741 (2003). https://doi.org/10.1016/j.msec.2003.09.120

    Article  CAS  Google Scholar 

  43. A. Manohar, C. Krishnamoorthi, Synthesis and magnetic hyperthermia studies on high susceptible Fe1−xMgxFe2O4 superparamagnetic nanospheres. J. Magn. Magn. Mater. 443, 267–274 (2017)

    Article  CAS  Google Scholar 

  44. A. Manohar, C. Krishnamoorthi, Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method. J. Photochem. Photobiol. B 173, 456–465 (2017)

    Article  CAS  Google Scholar 

  45. A. Manohar, C. Krishnamoorthi, Magnetic and photocatalytic studies on Zn1−xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method. J. Photochem. Photobiol. B 177, 95–104 (2017)

    Article  CAS  Google Scholar 

  46. A. Manohar, C. Krishnamoorthi, Structural, Raman, magnetic and other properties of co-substituted ZnFe2O4 nanocrystals synthesized by solvothermal reflux method. J. Mater. Sci. 29, 737–745 (2018)

    CAS  Google Scholar 

  47. S. Kumar, M. Miclau, C. Martin, Chem. Mater. 25, 2083–2088 (2013). https://doi.org/10.1021/cm400420e

    Article  CAS  Google Scholar 

  48. P.A. Desai, A.A. Athawale, Microwave combustion synthesis of silver doped lanthanum ferrite magnetic nanoparticles. Def. Sci. J. 63, 285–291 (2013). https://doi.org/10.14429/dsj.63.2387

    Article  CAS  Google Scholar 

  49. A.A.H. El-Bassuony, H.K. Abdelsalam, Correlation of heat treatment and the impurities accompanied Ag nanoparticles. Eur. Phys. J. Plus 135, 66 (2019). https://doi.org/10.1140/epjp/s13360-019-00025-y

    Article  CAS  Google Scholar 

  50. L. Joudah, S. Moghaddas, R.N. Bose, DNA oxidation by peroxo-chromium(v) species: oxidation of guanosine to guani- dinohydantoin. Chem. Commun. 16, 1742–1743 (2002)

    Article  Google Scholar 

  51. A.A.H. El-Bassuony, H.K. Abdelsalam, Impacts of hematite, bunsenite and maghemite impurities on the physical and antimicrobial properties of silver nanoparticles. Eur. Phys. J. Plus 135, 64 (2019). https://doi.org/10.1140/epjp/s13360-020-00139-8

    Article  CAS  Google Scholar 

  52. R. Vijayalakshmi, V. Subramanian, B.U. Nair, A study of the interaction of Cr(III) complexes and their selective binding with B-DNA: a molecular modeling approach. J. Biomol. Struct. Dyn. 19(6), 1063–1071 (2002)

    Article  CAS  Google Scholar 

  53. C. Sheikh, M.S. Houssain, M.S. Easmin, M.S. Islam, M.A. Houssain, M. Rashid, New coordination complexes of chromium as cytotoxic and antimicrobial agents. Pak. J. Biol. Sci. 7, 335–339 (2004)

    Article  Google Scholar 

  54. A.A.H. El-Bassuony, H.K. Abdelsalam, Synthesis, characterization and antimicrobial activity of AgFeO2 delafossite. J. Mater. Sci. 29, 3259–3269 (2018). https://doi.org/10.1007/s10854-018-9268-9

    Article  CAS  Google Scholar 

  55. A.A.H. El-Bassuony, Influence of high annealing temperature on structural, magnetic and antimicrobial activity of silver chromite nanoparticles for biomedical applications. J. Inorg. Organomet. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01306-w

    Article  Google Scholar 

  56. A.A.H. El-Bassuony, Effect of Al addition on structural, magnetic, and antimicrobial properties of Ag nanoparticles for biomedical applications. JOM. (2019). https://doi.org/10.1007/s11837-019-03784-2

    Article  Google Scholar 

  57. P.L. Páez, C.M. Bazán, M.E. Bongiovanni, J. Toneatto, I. Albesa, M.C. Becerra, G.A. Argüello, Oxidative stress and antimicrobial activity of chromium(III) and ruthenium(II) complexes on Staphylococcus aureus and Escherichia coli. BioMed Res. Int. (2013). https://doi.org/10.1155/2013/906912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa A. H. El-Bassuony.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bassuony, A.A.H., Abdelsalam, H.K. Synthesis, characterization, magnetic and antimicrobial properties of silver chromite nanoparticles. J Mater Sci: Mater Electron 31, 3662–3673 (2020). https://doi.org/10.1007/s10854-020-02924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02924-8

Navigation