Skip to main content
Log in

Resistive- and capacitive-type humidity and temperature sensors based on a novel caged nickel sulfide for environmental monitoring

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work for the first time, a new bis(4-benzylpiperazine-1-carbodithioato-k2S,Sʹ)nickel(II) complex (hereafter caged nickel sulfide) has been used to fabricate the capacitive-type and resistive-type sensor. The surface consisted of 2D plates, pores and pore-channels of various shapes and size. These 2D plates and pores played a pivotal role in the sensing mechanism of the sensor. The conduction mechanism is based on Von Grotthuss mechanism. In the relative humidity (RH) range 30–90%, the resistance of the sensor was decreased by two orders of magnitude (from 2.94 × 108 Ω at 30%RH to 2.34 × 106 Ω at 90%RH at operational frequency of 120 Hz). While at applied frequency of 120 Hz, capacitance of the sensor was increased from 15.95 pF to 38.1 pF in the range of 30–90%RH. At higher frequency (10 kHz) the capacitance of the sensor is reduced to 6.285 pF. The maximum hysteresis of 1.54% is noted which is less than the reported in the literature. The response and recovery time of the sensor were 25 and 30 s, respectively, which are either far smaller or greater than the response and recovery time of the various sensors reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Matatagui, O.V. Kolokoltsev, N. Qureshi, E.V. Mejía-Uriarte, J.M. Saniger, A novel ultra-high frequency humidity sensor based on a magnetostatic spin wave oscillator. Sens. Actuators B 210, 297–301 (2015)

    Article  CAS  Google Scholar 

  2. T. Wagner, S. Krotzky, A. Weiß, T. Sauerwald, C.-D. Kohl, J. Roggenbuck, M. Tiemann, A high temperature capacitive humidity sensor based on mesoporous silica. Sensors 11, 3135–3144 (2011). https://doi.org/10.3390/s110303135

    Article  CAS  Google Scholar 

  3. W.H. Lim, Y.K. Yap, W.Y. Chong, H. Ahmad, All-optical graphene oxide humidity sensors. Sensors 14, 24329–24337 (2014). https://doi.org/10.3390/s141224329

    Article  CAS  Google Scholar 

  4. M.-U. Rehman, M. Imranb, A. Zia-Ur-Rehman, A. Hassan, A. Badshah, A. Shah, M.N. Tahir, G. Shah, Humidity-sensing and DNA-binding ability of bis(4-benzylpiperazine-1-carbodithioato-k2 S,S′)nickel(II). J Coord Chem 68, 295–307 (2015)

    Article  CAS  Google Scholar 

  5. K. Arshaka, K. Twomey, D. Egan, A ceramic thick film humidity sensor based on MnZn ferrite. Sensors 2, 50–61 (2002)

    Article  CAS  Google Scholar 

  6. N. Kavasoğlu, M. Bayhan, Air moisture sensing properties of ZnCr2O4–K2CrO4 composites. Turk. J. Phys. 29, 249–255 (2005)

    Google Scholar 

  7. U.V. Patil, C.S. Rout, D.J. Late, Impedimetric humidity sensor based on α-Fe2O3 nanoparticles. Adv. Device Mater. 1(3), 88–92 (2015)

    Article  Google Scholar 

  8. L. Hu, Y. Li, Improved acetone sensing properties of flat sensors based on Co-SnO2 composite nanofibers. Chin. Sci. Bull. 56, 2644–2648 (2011)

    Article  CAS  Google Scholar 

  9. H.M. Zhao, Y. Chen, X. Quan et al., Preparation of Zn-doped TiO2 nantotubes electrode and its application in pentachlorophenol photoelectron-catalytic degradation. Chin. Sci. Bull. 52, 1456–1457 (2007)

    Article  CAS  Google Scholar 

  10. B. Cheng, B. Tian, C. Xie, Y. Xiao, S. Lei, Highely sensitive humidity sensor based on amorphous Al2O3 nanotubes. J. Mater. Chem. 21, 1907–1912 (2011)

    Article  CAS  Google Scholar 

  11. S. Agarwal, G. Sharma, Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators B 94, 290–293 (2003)

    Article  Google Scholar 

  12. M.V. Kulkarni, A.K. Viswanath, P. Khanna, Synthesis and humidity sensing properties of conducting polymer (N-methyl aniline) doped with different acids. Sens. Actuators B 115, 140–149 (2006)

    Article  CAS  Google Scholar 

  13. C.L. Cao, C.G. Hu, I. Fang, S.X. Wang, Y.S. Tian, C.Y. Pan, Humidity sensor based on multi-walled carbon nanotubes thin films. J. Nanomater. (2011). https://doi.org/10.1155/2011/707303

    Article  Google Scholar 

  14. C.D. Simpson, Industrial Electronics (Prentice-Hall, Englewood Cliff, 1996)

    Google Scholar 

  15. X.-J. Lv, M.-S. Yao, G.-E. Wang, Y.-Z. Li, G. Xu, A new 3D cupric coordination polymer as chemiresistor humidity sensor: narrow hysteresis, high sensitivity, fast response and recovery. Sci China Chem 60(9), 1197–1204 (2017)

    Article  CAS  Google Scholar 

  16. S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, R. Moos, Metal-organic frameworks for sensing applications in the gas phase. Sensors 9, 1574–1589 (2009)

    Article  CAS  Google Scholar 

  17. J. Feng, X. Kang, Q. Zuo, C. Yuan, W. Wang, Y. Zhao, L. Zhu, H. Lu, Fabrication and evaluation of a graphene oxide-based capacitive humidity sensor. Sensors 16, 314 (2016)

    Article  Google Scholar 

  18. J. Zhang, L. Sun, C. Chen, M. Liu, W. Dong, W. Guo, S. Ruan, High performance humidity sensor based on metal organic framework MIL-101 (Cr) nanoparticles. J Alloys Compd. 695, 520–525 (2017)

    Article  CAS  Google Scholar 

  19. M. Tian, Z.H. Fu, B. Nath, M.S. Yao, Synthesis of large and uniform Cu3TCPP truncated quadrilateral nano-flake and its humidity sensing properties. RSC Adv. 6, 88991–88995 (2016)

    Article  CAS  Google Scholar 

  20. O.K. Arghese, D.W. Gong, M. Paulose, K.G. Ong, C.A. Grimes, E.C. Dickey, Highly ordered nanoporous alumina films: effect of pore size and uniformity on sensing performance. J. Mater. Res. 17(5), 1162 (2002)

    Article  Google Scholar 

  21. J.W. Dally, W.F. Riley, K.G. McConnel, Instrumentation for Engineering Measurements, 2nd edn. (Wiley, New York, 1993)

    Google Scholar 

  22. L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, X.J. Li, Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sens. Actuators B 177, 740–744 (2013)

    Article  CAS  Google Scholar 

  23. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013)

    Article  Google Scholar 

  24. H.Y. Wang, Y.Q. Wang, Q.F. Hu, X.J. Li, Capacitive humidity sensing properties of sic nanowires grown on silicon nanoporous pillar array. Sens. Actuators B 166, 451–456 (2012)

    Article  Google Scholar 

  25. Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, K.S. Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13, 3615–3624 (2013)

    Article  CAS  Google Scholar 

  26. Z.-S. Feng, X.-J. Chen, J.-J. Chen, J. Hu, A novel humidity sensor based on alumina nanowire films. J. Phys. D 45, 225305 (2012)

    Article  Google Scholar 

  27. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N. Azrin Shah, Z. Radzi, N. Abu-Osman, Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 16, 1135 (2016)

    Article  Google Scholar 

  28. A. Din, KhS Karimov, K. Akhtar, M.I. Khan, M.T.S. Chani, M.A. Khan, A.M. Asiri, S.B. Khan, Impedimetric humidity sensor based on the use of SnO2–Co3O4 spheres. J. Mater. Sci. Mater. Electron. 28, 4260–4266 (2017)

    Article  CAS  Google Scholar 

  29. Y. Wang, S. Park, J.T. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B 149, 136–142 (2010)

    Article  CAS  Google Scholar 

  30. W.-P. Chen, Z.-G. Zhao, X.-W. Liu, Z.-X. Zhang, C.-G. Suo, A capacitive humidity sensor based on multi-wall carbon nantubes (MWCNTs). Sensors 9, 7431–7444 (2009)

    Article  CAS  Google Scholar 

  31. Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, H. Park, Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators B 141, 441–446 (2009)

    Article  CAS  Google Scholar 

  32. L. Zhu, Y. Wang, D. Zhangg, C. Li, D. Sun, S. Wen, Y. Chen, S. Ruan, Gas Sensor based on metal sulfide Zn1-xCdxS nanowires with excellent performance. ACS Appl. Mater. Interfaces 7, 20793–20800 (2015)

    Article  CAS  Google Scholar 

  33. E.J. Connolly, G.M. O’Halloran et al., Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications. Sens. Actuators A 99, 25–30 (2002)

    Article  CAS  Google Scholar 

  34. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N.F.A. Shah, Z. Radzi, N.A. Abu-Osman, Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 16, 1135 (2016)

    Article  Google Scholar 

  35. P. Sun, W.N. Wang, Y.P. Liu, Y.F. Sun, J. Ma, G.Y. Lu, Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B 173, 52–57 (2012)

    Article  CAS  Google Scholar 

  36. Y. XueJun, H. TianSheng, Y. Zhou, H. ShaungPing, Room temperature H2S micro-sensors with anti-humidity properties fabricated from NiO-In2O3 composite nanofibers. Chin. Sci. Bull. 58(7), 821–826 (2013)

    Article  Google Scholar 

  37. Y.Y. Xu, X.J. Li et al., Capacitive humidity sensing properties of hydrothermally-etched silicon nano-porous pillar array. Sens. Actuators B 105, 219–222 (2005)

    Article  CAS  Google Scholar 

  38. J. WeiFen, X. Shunhua, Z. HuanYun, D. YongFen, L. XiJian, Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array. Sci. China E 50(4), 510–515 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Higher Education Commission (HEC) of Pakistan for financial support (No. 12 Project No. 12-50/SRGP/R&D/HEC/2014). The authors are also thankful to the Department of Chemistry, QAU, Islamabad for providing experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muneeb-ur-Rahman or Zia-ur-Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneeb-ur-Rahman, Shah, G., Ullah, A. et al. Resistive- and capacitive-type humidity and temperature sensors based on a novel caged nickel sulfide for environmental monitoring. J Mater Sci: Mater Electron 31, 3557–3563 (2020). https://doi.org/10.1007/s10854-020-02904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02904-y

Navigation