Skip to main content
Log in

Performance evaluation of mass transport enhancement in novel dual-channel design of micro-reactors

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Various design configurations of semi-T-shaped dual-channel micro-reactors were numerically examined for their laminar mass transport performance in heterogeneous catalytic combustion of methane and air. One single-channel and five dual-channel configurations (i.e., parallel, divergent, convergent, zig-zag, and curved configurations) were investigated with a two-dimensional computational fluid dynamics model. These innovative design configuration were compared in terms of CH4 utilization, pressure drop, CO/CO2 ratio, catalyst utilization, and a performance index at various Reynolds numbers. Dual-channel micro-reactors were found to enhance mass transport due to the well mixed flow and the increased reaction contact area. By suitably modifying the dual-channel layout angle and shape, recirculation zones can be formed within the reactor which increase CH4 utilization. However, the improved conversion rate is achieved at the cost of high pressure drop. The parallel dual-channel design provides the highest conversion per unit pressure drop over the range of the Reynolds numbers studied. For Reynolds numbers of 20 and 40, compared to the single-channel micro-reactor, divergent, convergent and curved channel designs yield higher conversion per unit pumping power. However, further increase of Reynolds number (i.e., 60, 80, and 100) deteriorates their performance due to the significantly increased pressure drop and shorter residence time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

Ar :

pre − exponential factor

B i :

bulk/solid species, mol

\( {b}_i^{\hbox{'}},{b}_i^{\hbox{'}\hbox{'}} \) :

stoichiometric coefficient for bulk reactant, and product

c p :

specific heat, J · kg−1K−1

Di :

diffusivity of species i, m · s−2

E r :

activation energy for the reaction, J · kg · mol

Gi :

gas species, mol

\( {g}_i^{\hbox{'}},{g}_i^{\hbox{'}\hbox{'}} \) :

stoichiometric coefficient for gas reactant, and product

keff :

effective thermal conductivity, W · m−1K−1

kf, r :

reaction rate constant using Arrhenius expression

M :

mean molecular mass

\( {\dot{m}}_{\mathrm{dep}} \) :

net rate of mass deposition, kg

p :

pressure, pa

Q :

volume flow rate, m3 · s−1

R :

universal gas constant, J · kg‐1 · mol‐1 · K‐1

R i :

reaction rate of species i, kg · m−3

Si :

surface ‐ adsorbed/site species, mol

\( {s}_i^{\hbox{'}},{s}_i^{\hbox{'}\hbox{'}} \) :

stoichiometric coefficient for site reactant, and product

S temp :

heat release/absorb due to reactions, W · m‐3

T :

temperature, K

u :

velocity, m · s−1

x :

mole fraction

βr :

temperature exponent

ρ :

density, kg · m−3

μ :

dynamic viscosity, K · g · m‐1 · s‐1

:

rate of rth reaction

η pump :

pump efficiencey

ωi :

mass fraction of species i

b:

Bulk

dep:

Deposition

eff:

Effective

g:

Gas

i:

Species i

r:

rth wall surface reaction

r,in:

Reactant at inlet

r,out:

Reactant at outlet

s:

Solid/site

temp:

Temperature

References

  1. Pan J, Zhang R, Lu Q, Zha Z, Bani S (2017) Appl Therm Eng 117:1

    Article  Google Scholar 

  2. Yang WM, Chua KJ, Pan JF, Jiang DY, An H (2014) Energ ConversManag 78:81

    Google Scholar 

  3. Yao X, Zhang Y, Du L, Liu J, Yao J (2015) Renew Sust Energ Rev 47:519

    Article  Google Scholar 

  4. Zuo W, J E, Han D, Jin Y (2017) Energ ConversManag 150:343

    Google Scholar 

  5. Aghel B, Rahimi M, Sepahvand A, Alitabar M, Ghasempour HR (2014) Energ ConversManag 84:541

    Google Scholar 

  6. Dai Z, Fletcher DF, Haynes BS (2015) Int J Heat Mass Transf 83:382

    Article  Google Scholar 

  7. Jensen KF (2001) Chem Eng Sci 56:293

    Article  Google Scholar 

  8. Shaker M, Ghaedamini H, Sasmito AP, Kurnia JC, Jangam SV, Mujumdar AS (2012) Chem Eng Process 54:1

    Article  Google Scholar 

  9. Lu Z, McMahon J, Mohamed H, Barnard D, Shaikh TR, Mannella CA, Wagenknecht T, Lu T-M (2010) Sensors Actuators B Chem 144:301

    Article  Google Scholar 

  10. Mohan B, Puqing J, Sasmito AP, Kurnia JC, Jangam SV, Mujumdar AS (2014) Ind Eng Chem Res 53:18699

    Article  Google Scholar 

  11. Cheng Y, Jiang Y, Wang W (2018) Chem Eng Process 127:93

    Article  Google Scholar 

  12. Rosinha Grundtvig IP, Daugaard AE, Woodley JM, Gernaey KV, Krühne U (2017) Chem Eng J 322:215

    Article  Google Scholar 

  13. M. Rahimi, B. Aghel, B. Hatamifar, M. Akbari, A. Alsairafi, Chem. Eng. Proces 2014, 86, 36

  14. Chen B, Li G, Wang W, Wang P (2015) Appl Therm Eng 88:94

    Article  Google Scholar 

  15. Liu D, Ling X, Peng H (2016) Adv Mech Eng 8:1687814016637329

    Google Scholar 

  16. Liu Z, Guo L, Huang T, Wen L, Chen J (2014) Chem Eng Sci 119:124

    Article  Google Scholar 

  17. Hossain S, Ansari MA, Kim K-Y (2009) Chem Eng J 150:492

    Article  Google Scholar 

  18. Rostami AA, Mujumdar AS, Saniei N (2002) Heat Mass Transf 38:359

    Article  Google Scholar 

  19. Rabani R, Talebi S, Rabani M (2016) Heat Mass Transf 52:619

    Google Scholar 

  20. Gorasiya A, Saha AK (2019, in press) Heat Mass Transf. https://doi.org/10.1007/s00231-018-2419-y

    Article  Google Scholar 

  21. Fazeli A, Behnam M (2010) Int J Hydrogen Energ 35:9496

    Article  Google Scholar 

  22. Sasmito AP, Kurnia JC, Mujumdar AS (2012) Ind Eng Chem Res 51:1970

    Article  Google Scholar 

  23. Kurnia JC, Sasmito AP, Mujumdar AS (2011) Appl Therm Eng 31:1293

    Article  Google Scholar 

  24. An H, Li A, Sasmito AP, Kurnia JC, Jangam SV, Mujumdar AS (2012) Chem Eng Sci 75:85

    Article  Google Scholar 

  25. Ortega-Casanova J, Lai C-H (2018) Chem Eng Process 125:163

    Article  Google Scholar 

  26. Ansari MA, Kim K-Y (2010) Chem Eng J 162:760

    Article  Google Scholar 

  27. Bawornruttanaboonya K, Devahastin S, Mujumdar AS, Laosiripojana N (2017) Int J Heat Mass Transf 115:174

    Article  Google Scholar 

  28. Chen Y-T, Chen K-H, Fang W-F, Tsai S-H, Fang J-M, Yang J-T (2011) Chem Eng J 174:421

    Article  Google Scholar 

  29. Alam A, Kim K-Y (2013) Sensors Actuators B Chem 176:639

    Article  Google Scholar 

  30. Bond TG, Noguchi BA, Chou C-P, Mongia RK, Chen J-Y, Dibble RW (1996) Symp Combust 26:1771

    Article  Google Scholar 

  31. Canu P (2001) Catal Today 64:239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agus P. Sasmito.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., An, H., Sasmito, A.P. et al. Performance evaluation of mass transport enhancement in novel dual-channel design of micro-reactors. Heat Mass Transfer 56, 559–574 (2020). https://doi.org/10.1007/s00231-019-02727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02727-6

Navigation