Skip to main content
Log in

Thermodynamic irreversibility and conjugate effects of integrated microchannel cooling device using TiO2 nanofluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Thermal management is highly essential for the latest electronic devices to effectively dissipate heat in a densely packed environment. Usually, these high power devices are cooled by integrating micro scale cooling systems. Most of the works reported in the literature majorly concentrate on microchannel heat sink in which the characteristics of friction factor and enhancement of heat transfer are analyzed in detail. However, due to the advent of compact electronic devices a crucial investigation is required to facilitate an amicable environment for the neighboring components so as to improve the reliability of the electronic devices. Henceforth, in the present study a combined experimental and numerical analysis is performed to provide an insight to determine the performance of a copper microchannel integrated with aluminium block using TiO2 nanofluid for different particle configurations. Needless to say, the present study, which also focuses on entropy generation usually attributed to the thermodynamic irreversibility, is very much significant to design an optimum operating condition for better reliability and performance of the cooling devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

Re :

Reynolds number

u :

velocity of the fluid (m/s)

k :

thermal conductivity (W/m. K)

\( {q}_{bot}^{{\prime\prime} } \) :

heat flux at the bottom (W/cm2)

T :

room temperature (°C)

n f :

nanofluid

b f :

base fluid

C p :

specific heat (J/kg. K)

n :

shape factor

Pr :

Prandtl number

Vf :

volume fraction

W1 :

width of the channel wall

W2 :

width of the channel

H:

height of the channel

D:

diameter of the heater

L:

length of the channel

Tw :

total width of the channel

Pin :

pressure at microchannel inlet

Pout :

pressure at microchannel outlet

T in :

temperature inlet

T out :

temperature outlet

T e :

temperature of the heater

TAl :

temperature of the aluminium block

TC :

temperature of the copper microchannel

\( \dot{m} \) :

mass flow rate

Nu :

Nusselt number

\( \dot{S} \) :

total entropy generation

Δp :

pressure drop (Pa)

ρ:

density (kg/m3)

υ m :

mean velocity of the fluid

μ :

viscosity (cP)

φ :

particle concentration factor

s :

solid

f :

fluid

p :

particle

bot :

bottom of the heat sink

m :

mean

References

  1. Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):82–85

    Google Scholar 

  2. Tuckerman DB, Pease RF (1981) High-performance heat sinking for VLSI. IEEE Electronic Devices Lett 2(5):126–129

    Google Scholar 

  3. Zhang LY, Zhang YF, Chen JQ, Bai SL (2015) Fluid flow and heat transfer characteristics of liquid cooling microchannels in LTCC multilayered packaging substrate. Int J Heat Mass Transf 84:339–345

    Google Scholar 

  4. Moradi HV, Floryan JM (2013) Maximization of heat transfer across micro-channels. Int J Heat Mass Transf 66:517–530

    Google Scholar 

  5. Parlak Z (2018) Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries. Heat Mass Transf 54(11):3317–3328

    Google Scholar 

  6. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticle. ASME Fluids Eng Div 231:99–105

    Google Scholar 

  7. Bhattacharya P, Samantha AN, Chakraborty S (2009) Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat Mass Transf 45(10):1323–1333

    Google Scholar 

  8. Rimbault B, Nguyen CT, Galanis N (2014) Experimental investigation of CuO-water nanofluid flow and heat transfer inside a microchannel heat sink. Int J Thermal Sci 84:275–292

    Google Scholar 

  9. Anoop K, Sadr R, Yu J, Kang S, Jeon S, Banerjee D (2012) Experimental study of forced convective heat transfer of nanofluids in a microchannel. Int Commun Heat Mass Transf 39(9):1325–1330

    Google Scholar 

  10. Ahmed M, Eslamian M (2015a) Laminar forced convection of a nanofluid in a microchannel: effect of flow inertia and external forces on heat transfer and fluid flow characteristics. App Thermal Eng 78:326–338

    Google Scholar 

  11. Nimmagadda R, Venkatasubbaiah K (2015) Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3+ ag/water). Eur J Mech B Fluids 52:19–27

    MathSciNet  MATH  Google Scholar 

  12. Narendran G, Gnanasekaran N, Perumal DA (2018b) A review on recent advances in microchannel heat sink configurations. Patent Mech Eng 11(3):190–215

    Google Scholar 

  13. Brinda R, Daniel RJ, Sumangala K (2012) Ladder shape micro channels employed high performance micro cooling system for ULSI. Int J Heat Mass Transf 55(13–14):3400–3411

    Google Scholar 

  14. Eslamian M, Saghir MZ (2014) On thermophoresis modeling in inert nanofluids. Int J Thermal Sci 80:58–64

    Google Scholar 

  15. Ahmed M, Eslamian M (2015b) Numerical simulation of natural convection of a Nanofluid in an inclined heated enclosure using two-phase lattice Boltzmann method: accurate effects of thermophoresis and Brownian forces. Nanoscale Res Lett 10:296

    Google Scholar 

  16. Dominic A, Sarangan J, Suresh S, Devahdhanush VS (2017) An experimental study of heat transfer and pressure drop characteristics of divergent wavy minichannels using nanofluids. Heat Mass Transf 53(3):959–971

    Google Scholar 

  17. Arshad W, Ali HM (2017) Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. Int J Heat Mass Transf 110:248–256

    Google Scholar 

  18. Yin Z, Bao F, Tu C, Hua Y, Tian R (2018) Numerical and experimental studies of heat and flow characteristics in a laminar pipe flow of nanofluid. J Exp Nanosci 13:82–94

    Google Scholar 

  19. Moharana MK, Khandekar S (2012) Effect of aspect ratio of rectangular microchannels on axial back conduction in its solid substrate. Int J Microscale Nanoscale Thermal Fluid Trans Phenomena 4(3–4):211–229

    Google Scholar 

  20. Bejan A (1996) Entropy generation minimization. CRC press, Roca Raton

    MATH  Google Scholar 

  21. McHale JP, Garimella SV (2010) Heat transfer in trapezoidal microchannels of various aspect ratios. Int J Heat Mass Transf 53:365–375

    MATH  Google Scholar 

  22. Moghaddami M, Mohammadzade A, Esfehani SAV (2011) Second law analysis of nanofluid flow. Energy Convers Manag 52(2):1397–1405

    Google Scholar 

  23. Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MA, Pop I, Sahin AZ, Wongwises S (2013) A review of entropy generation in nanofluid flow. Int J Heat Mass Transf 65:514–532

    Google Scholar 

  24. Li J, Kleinstreuer C (2010) Entropy generation analysis for nanofluid flow in microchannels. J Heat Transf 132(12):122401, 1–122401, 8

    Google Scholar 

  25. Heshmation S, Bahiraei M (2017) Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel: effects of Brownian diffusion, shear rate and viscosity gradient. Chem Eng Sci 172:52–65

    Google Scholar 

  26. Sohel MR, Saidur R, Hassan NH, Elias MM, Khaleduzzaman SS, Mahbubul IM (2013) Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink. Int Commun Heat Mass Transf 46:85–91

    Google Scholar 

  27. Leong KY, Saidur R, mahilia TMI, Yaru YH (2012) Entropy generation analysis of nanofluid flow in a circular tube subjected to constant wall temperature. Int Commun Heat Mass Transf 39(8):1169–1175

    Google Scholar 

  28. Karami M, Shirani E, Avara A (2012) Analysis of entropy generation, pumping power, and tube wall temperature in aqueous suspentions of alumina particles. Heat Transf Res 43(4):327–342

    Google Scholar 

  29. Narendran G, Bhat MM, Akshay D, Perumal DA (2018a) Experimental analysis on exergy studies of flow through a minichannel using TiO2/water nanofluid. Thermal Sci Eng Prog 8:93–104

    Google Scholar 

  30. Chamka AJ, Molana M, Rahnama A, Ghadami F (2018) On the nanofluids applications in microchannels: a comprehensive review. Powder Technol 322:287–322

    Google Scholar 

  31. Shankar S, Ganguly S, Dalal A (2012) Analysis of entropy generation during mixed convection heat transfer of nanofluids past a square cylinders in vertically upward flow. J Heat Transf 134(12):122501, 1–122501, 8

    Google Scholar 

  32. Manay E, Akyurek EF, Sahin B (2018) Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys 9:615–624

    Google Scholar 

  33. Yu F, Wang T, Zhang C (2018) Effect of axial conduction on heat transfer in a rectangular microchannel with local heat flux. J Thermal Sci and Technol 13(1):1–13

    Google Scholar 

  34. Moharana MK, Agarwal G, Khandekar S (2011) Axial conduction in single phase simultaneously developing flow in a rectangular mini-channel array. Int J Thermal Sci 50(6):1001–1012

    Google Scholar 

  35. Rahimi M, Mehryar R (2012) Numerical study of axial heat conduction effects on the local Nusselt number at the entrance and ending regions of a circular microchannels. Int J Thermal Sci 59:87–94

    Google Scholar 

  36. Rosa P, Karayiannis TG, Collins MW (2009) Single phase heat transferrin microchannels: the importance of scaling effects. App Thermal Eng 29(17–18):3447–3468

    Google Scholar 

  37. Hung CY, Wu CM, Chen YN, Liou TM (2014) The experimental investigation of axial heat conduction effect on the heat transfer analysis in microchannel flow. Int J Heat Mass Transf 70:169–173

    Google Scholar 

  38. Ramiar A, Ranjbar AA, Hosseinizadeh SF (2012) Effect of axial conduction and variable properties on two dimensional conjugate heat transfer of Al2O3-EG/water mixture nanofluid in microchannel. J App Fluid Mech 5(3):79–87

    Google Scholar 

  39. Aghaei A, Khorasanizadeh H, Sheikhzadeh G, Abbaszadeh M (2016) Numerical study of magnetic field on mixed convection and entropy generation of nanofluid in a trapezoidal enclosure. J Magn Magn Mater 403:133–145

    Google Scholar 

  40. Pak BC, Cho Y (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. Exp Heat Transf 11:151–170

    Google Scholar 

  41. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    MATH  Google Scholar 

  42. Duangthongsuk W, Wongwises S (2009) Measurement of temperature- dependent thermal conductivity and viscosity of the TiO2-water nanofluid. Exp Thermal Fluid Sci 33:706–714

    Google Scholar 

  43. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50:2272–2281

    MATH  Google Scholar 

  44. Said Z, Sabiha MA, Saidur R, Hepbasli A, Rahim NA, Mekhilef S, Ward TS (2015) Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod 92:343–353

    Google Scholar 

  45. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterog eneous two-component systems. Ind Eng Chem Res 125:187–191

    Google Scholar 

  46. Einstein A (1906) A new determination of molecular dimension. Ann Phys 4:37–62

    Google Scholar 

  47. Brickman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581

    Google Scholar 

  48. Batchelor G (1977) The effect of Brownian motion on the bulk stress in the suspension of spherical particles. J Fluid Mech 83:97–117

    MathSciNet  Google Scholar 

  49. Maxwell JCA (1881) A treatise on electricity and magnetism. Clarendon Press, Oxford

    MATH  Google Scholar 

  50. Shah RK (1975) Thermal entry length solutions for the circular tube and parallel plates. In: 3rd National Heat Mass Transfer Conference. IIT Bombay 1:11–75

    Google Scholar 

  51. Singh PK, Anoop KP, Sundararajan T, Das SK (2010) Entropy generation due to flow and heat transfer in nanofluids. Int J Heat Mass Transf 53:4757–4767

    MATH  Google Scholar 

  52. Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E (2016) Heat transfer and entropy generation in a microchannels with longitudinal vortex generators using nanofluids. Energy 101:190–201

    Google Scholar 

  53. Bazdidi-Tehrani F, Vasefi SI, Anvari AM (2019) Analysis of particle dispersion and entropy generation in turbulent mixed convection of CuO-water nanofluid. Heat Transf Eng 40(1–2):81–94

    Google Scholar 

  54. Bazdidi-Tehrani F, Sedaghatnejad M, Vasefi SI, Jolandan NE (2016) Investigation of mixed convection and particle dispersion of nanofluids in a vertical duct. Proc Inst Mech Eng C J Mech Eng Sci 230(20):3691–3705

    Google Scholar 

  55. Coleman HW, Steele WG (2009) Experimentation, validation and uncertainty analysis for engineers, 3rd edn. Wiley, Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gnanasekaran.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narendran, G., Gnanasekaran, N. & Perumal, D.A. Thermodynamic irreversibility and conjugate effects of integrated microchannel cooling device using TiO2 nanofluid. Heat Mass Transfer 56, 489–505 (2020). https://doi.org/10.1007/s00231-019-02704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02704-z

Navigation