Skip to main content
Log in

Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Direct production of the platform chemical 5-hydroxymethylfurfural (5-HMF) from cellulose is challenging due to the rigid structure of cellulose. Herein, 5-HMF was effectively obtained from cellulose with high loading concentrations (> 20 wt.%) via an Al2(SO4)3-assisted mechanochemical method. The Al2(SO4)3 not only acted as catalyst for its Lewis and Brønsted acidity, but also assisted the disruption of the hydrogen bonds among cellulose molecules during ball milling pretreatment. The particle size and crystallinity of the cellulose greatly decreased after Al2(SO4)3-assisted ball milling pretreatment. The effects of various factors, including the organic solvent, reaction temperature and time, catalyst dose, and substrate concentration, on the yield of 5-HMF from cellulose were studied. A yield of 5-HMF up to 43.5% was obtained from cellulose via the developed mechanochemical-assisted method. A 36.1% yield of 5-HMF was retained when the initial cellulose loading concentration was as high as 21.6 wt.%. The green and efficient mechanochemical-assisted method was applicable to the efficient coproduction of 5-HMF and furfural from several waste biomass feedstocks.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19(2):425–433

    CAS  Google Scholar 

  • Boissou F, Sayoud N, De Oliveira Vigier K, Barakat A, Marinkovic S, Estrine B, Jerome F (2015) Acid-assisted ball milling of cellulose as an efficient pretreatment process for the production of butyl glycosides. Chemsuschem 8(19):3263–3269

    CAS  PubMed  Google Scholar 

  • Chen D, Liang F, Feng D, Xian M, Zhang H, Liu H, Du F (2016) An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts. Chem Eng J 300:177–184

    CAS  Google Scholar 

  • Chimentão RJ, Lorente E, Gispert-Guirado F, Medina F, López F (2014) Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohydr Polym 111(20):116–124

    PubMed  Google Scholar 

  • Choudhary V, Mushrif SH, Ho C, Anderko A, Vlachos DG (2013) Insights into the interplay of lewis and bronsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006

    CAS  Google Scholar 

  • Elsayed I, Mashaly M, Eltaweel F, Jackson MA, Hassan EB (2018) Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4 @SiO2-SO3H magnetic nanoparticle catalyst. Fuel 221:407–416

    CAS  Google Scholar 

  • Endo T, Aung EM, Fujii S, Hosomi S, Kimizu M, Ninomiya K, Takahashi K (2017) Investigation of accessibility and reactivity of cellulose pretreated by ionic liquid at high loading. Carbohydr Polym 176:365–373

    CAS  PubMed  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    CAS  Google Scholar 

  • Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    CAS  PubMed  Google Scholar 

  • Howard JL, Cao Q, Browne DL (2018) Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 9(12):3080–3094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Li Z, Wu Z, Lin L, Zhou S (2016) Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid. Ind Crops Prod 84:408–417

    CAS  Google Scholar 

  • Huang Y-B, Yang T, Lin YT, Zhu YZ, Li LC, Pan H (2018) Facile and high-yield synthesis of methyl levulinate from cellulose. Green Chem 20(6):1323–1334

    CAS  Google Scholar 

  • James SL, Adams CJ, Bolm C, Braga D, Collier P, Friscic T, Grepioni F, Harris KD, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–417

    CAS  PubMed  Google Scholar 

  • Jiang LQ, Zheng AQ, Meng JG, Wang XB, Zhao ZL, Li HB (2019) A comparative investigation of fast pyrolysis with enzymatic hydrolysis for fermentable sugars production from cellulose. Bioresour Technol 274:281–286

    CAS  PubMed  Google Scholar 

  • Kubota SR, Choi KS (2018) Electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation. Chemsuschem 11(13):2138–2145

    CAS  PubMed  Google Scholar 

  • Lee JH, Kwon JH, Kim TH, Choi WI (2017) Impact of planetary ball mills on corn stover characteristics and enzymatic digestibility depending on grinding ball properties. Bioresour Technol 241:1094–1100

    CAS  PubMed  Google Scholar 

  • Li G, Sun Z, Yan Y, Zhang Y, Tang Y (2016) Direct transformation of HMF into 2,5-diformylfuran and 2,5-dihydroxymethylfuran without an external oxidant or reductant. Chemsuschem 10(3):494–498

    PubMed  Google Scholar 

  • Lin X, Liang Y, Lu Z, Lou H, Zhang X, Liu S, Zheng B, Liu R, Fu R, Wu D (2017) Mechanochemistry: a green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustain Chem Eng 5(10):8535–8540

    CAS  Google Scholar 

  • Ling Z, Wang T, Makarem M, Santiago Cintrón M, Cheng HN, Kang X, Bacher M, Potthast A, Rosenau T, King H, Delhom CD, Nam S, Vincent Edwards J, Kim SH, Xu F, French AD (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26(1):305–328

    CAS  Google Scholar 

  • Liu H, Zhang Y, Hou T, Chen X, Gao C, Han L, Xiao W (2018) Mechanical deconstruction of corn stover as an entry process to facilitate the microwave-assisted production of ethyl levulinate. Fuel Process Technol 174:53–60

    CAS  Google Scholar 

  • Ma Z, Hu H, Sun Z, Fang W, Zhang J, Yang L, Zhang Y, Wang L (2017) Acidic zeolite L as a highly efficient catalyst for dehydration of fructose to 5-Hydroxymethylfurfural in ionic liquid. Chemsuschem 10(8):1669–1674

    CAS  PubMed  Google Scholar 

  • Martínez JJ, Silva DF, Aguilera EX, Rojas HA, Brijaldo MH, Passos FB, Romanelli GP (2017) Dehydration of glucose to 5-hydroxymethylfurfural using LaOCl/Nb2O5 catalysts in hot compressed water conditions. Catal Lett 147(7):1765–1774

    Google Scholar 

  • Mattonai M, Pawcenis D, del Seppia S, Łojewska J, Ribechini E (2018) Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresour Technol 270:270–277

    CAS  PubMed  Google Scholar 

  • Molleti J, Tiwari MS, Yadav GD (2017) Novel synthesis of Ru/OMS catalyst by solvent-free method: selective hydrogenation of levulinic acid to γ-valerolactone in aqueous medium and kinetic modelling. Chem Eng J 334:2488–2499

    Google Scholar 

  • NREL (2004) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden, CO, LAP02

  • Pagán-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA (2012) Production of 5-Hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent. ACS Catal 2(6):930–934

    Google Scholar 

  • Parveen Kumar DMB, Delwiche Michael J, Stroeve Pieter (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Google Scholar 

  • Qi X, Watanabe M, Aida TM (2009) Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catal Commun 10(13):1771–1775

    CAS  Google Scholar 

  • Qi X, Guo H, Li L, Smith RL Jr (2012a) Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. Chemsuschem 5(11):2215–2220

    CAS  PubMed  Google Scholar 

  • Qi X, Watanabe M, Aida TM, Smith RL (2012b) Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Bioresour Technol 109(2):224–228

    CAS  PubMed  Google Scholar 

  • Qi X, Liu N, Lian Y (2015) Carbonaceous microspheres prepared by hydrothermal carbonization of glucose for direct use in catalytic dehydration of fructose. RSC Adv 5(23):17526–17531

    CAS  Google Scholar 

  • Qi X, Yan L, Shen F, Qiu M (2019) Mechanochemical-assisted hydrolysis of pretreated rice straw into glucose and xylose in water by weakly acidic solid catalyst. Bioresour Technol 273:687–691

    CAS  PubMed  Google Scholar 

  • Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6(3):738–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu M, Bai C, Yan L, Shen F, Qi X (2018) Efficient mechanochemical-assisted production of glucose from cellulose in aqueous solutions by carbonaceous solid acid catalysts. ACS Sustain Chem Eng 6(11):13826–13833

    CAS  Google Scholar 

  • Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16(1):24–38

    CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. J Text Res 29:786–794

    CAS  Google Scholar 

  • Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1(8):858–870

    CAS  Google Scholar 

  • Shen F, Sun S, Yang J, Qiu M, Qi X (2019) Coupled pretreatment with liquid nitrogen and ball milling for enhanced cellulose hydrolysis in water. ACS Omega 4(7):11756–11759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Qiu M, Shen F, Qi X (2017) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25(1):17–22

    Google Scholar 

  • Tang J, Zhu L, Fu X, Dai J, Guo X, Hu C (2016) Insights into the kinetics and reaction network of aluminum chloride-catalyzed conversion of glucose in NaCl–H2O/THF biphasic system. ACS Catal 7(1):256–266

    Google Scholar 

  • Thulluri C, Goluguri BR, Konakalla R, Shetty PR, Addepally U (2013) The effect of assorted pretreatments on cellulose of selected vegetable waste and enzymatic hydrolysis. Biomass Bioenergy 49(2):205–213

    CAS  Google Scholar 

  • Wang Z, Chen Q (2016) Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. Green Chem 18(21):5884–5889

    CAS  Google Scholar 

  • Werpy TA, Holladay JE, White JF (2004) Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas. Synthetic Fuels

  • Wrigstedt P, Keskiväli J, Leskelä M, Repo T (2015) The role of salts and brønsted acids in lewis acid-catalyzed aqueous-phase glucose dehydration to 5-hydroxymethylfurfural. ChemCatChem 7(3):501–507

    CAS  Google Scholar 

  • Xu S, Pan D, Li W, Shen P, Wu Y, Song X, Zhu Y, Xu N, Gao L, Xiao G (2018) Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurfural using an efficient and inexpensive manganese phosphate catalyst. Fuel Process Technol 181:199–206

    CAS  Google Scholar 

  • Yan L, Ma R, Wei H, Li L, Zou B, Xu Y (2019) Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system. Bioresour Technol 279:84–91

    CAS  PubMed  Google Scholar 

  • Yang Tao, Zhou Yihan, Zhu Shengzhen, Pan Hui, Huang Y (2017) Insight into aluminum sulfate-catalyzed xylan conversion into furfural in a γ-valerolactone/water biphasic solvent under microwave conditions. Chemsuschem 10:4066–4079

    CAS  PubMed  Google Scholar 

  • Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Bioresour Technol 238:716–732

    CAS  PubMed  Google Scholar 

  • Zhang Y, Huang M, Su J, Hu H, Yang M, Huang Z, Chen D, Wu J, Feng Z (2019) Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. Biotechnol Biofuels 12:12–26

    PubMed  PubMed Central  Google Scholar 

  • Zhu C, Liu Q, Dan L, Wang H, Zhang C, Cui C, Chen L, Cai C, Ma L (2018) Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni supported on zirconium phosphate catalysts. ACS Omega 3(7):7407–7417

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. 21706139, 21577073, 51808181 and 21876091), the Natural Science Foundation of Tianjin (17JCQNJC05700), and the Natural Science Fund for Distinguished Young Scholars of Tianjin (No. 17JCJQJC45500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Sun, S., Zhang, X. et al. Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose. Cellulose 27, 3013–3023 (2020). https://doi.org/10.1007/s10570-020-03008-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03008-w

Keywords

Navigation