Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures

Abstract

In biological systems, large and complex structures are often assembled from multiple simpler identical subunits. This strategy—homooligomerization—allows efficient genetic encoding of structures and avoids the need to control the stoichiometry of multiple distinct units. It also allows the minimal number of distinct subunits when designing artificial nucleic acid structures. Here, we present a robust self-assembly system in which homooligomerizable tiles are formed from intramolecularly folded RNA single strands. Tiles are linked through an artificially designed branched kissing-loop motif, involving Watson–Crick base pairing between the single-stranded regions of a bulged helix and a hairpin loop. By adjusting the tile geometry to gain control over the curvature, torsion and the number of helices, we have constructed 16 different linear and circular structures, including a finite-sized three-dimensional cage. We further demonstrate cotranscriptional self-assembly of tiles based on branched kissing loops, and show that tiles inserted into a transfer RNA scaffold can be overexpressed in bacterial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The bKL motif.
Fig. 2: Effects of beam and strut lengths on ladders made from tiles with beams of equal length.
Fig. 3: Controlling in-plane curvature using tiles of unequal beam lengths.
Fig. 4: Two strategies to construct multi-railed ladders.
Fig. 5: Tetrameric RNA nanocage.
Fig. 6: Cellular production of RNA tiles.
Fig. 7: Integration of RNA bKLs into RNA origami tiles, and design of a DNA bKL.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are principally within the figures and the associated Supplementary Information. Additional data are available from the authors upon request.

References

  1. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).

    CAS  PubMed  Google Scholar 

  2. Goodsell, D. S. & Olson, A. J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000).

    CAS  PubMed  Google Scholar 

  3. Ali, M. H. & Imperiali, B. Protein oligomerization: how and why. Bioorg. Med. Chem. 13, 5013–5020 (2005).

    CAS  PubMed  Google Scholar 

  4. Pieters, B. J., van Eldijk, M. B., Nolte, R. J. & Mecinovic, J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 45, 24–39 (2016).

    CAS  PubMed  Google Scholar 

  5. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    CAS  PubMed  Google Scholar 

  6. Bugyi, B. & Carlier, M. F. Control of actin filament treadmilling in cell motility. Annu. Rev. Biophys. 39, 449–470 (2010).

    CAS  PubMed  Google Scholar 

  7. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    CAS  PubMed  Google Scholar 

  8. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seeman, N. C. Structural DNA Nanotechnology (Cambridge Univ. Press, 2016).

  11. Guo, P. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5, 833–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Paillart, J. C., Marquet, R., Skripkin, E., Ehresmann, C. & Ehresmann, B. Dimerization of retroviral genomic RNAs: structural and functional implications. Biochimie 78, 639–653 (1996).

    CAS  PubMed  Google Scholar 

  13. Hill, A. C., Bartley, L. E. & Schroeder, S. J. Prohead RNA: a noncoding viral RNA of novel structure and function. Wiley Interdiscip. Rev. RNA 7, 428–437 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  PubMed  Google Scholar 

  15. Rothemund, P. W. et al. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352 (2004).

    CAS  PubMed  Google Scholar 

  16. Stewart, J. M., Subramanian, H. K. K. & Franco, E. Self-assembly of multi-stranded RNA motifs into lattices and tubular structures. Nucleic Acids Res. 45, 5449–5457 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, H., Chen, Y., He, Y., Ribbe, A. E. & Mao, C. Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angew. Chem. Int. Ed. 45, 1942–1945 (2006).

    CAS  Google Scholar 

  18. Tian, C. et al. Approaching the limit: can one DNA strand assemble into defined nanostructures? Langmuir 30, 5859–5862 (2014).

    CAS  PubMed  Google Scholar 

  19. Li, M., Zuo, H., Yu, J., Zhao, X. & Mao, C. One DNA strand homo-polymerizes into defined nanostructures. Nanoscale 9, 10601–10605 (2017).

    CAS  PubMed  Google Scholar 

  20. Horiya, S. et al. RNA LEGO: magnesium-dependent formation of specific RNA assemblies through kissing interactions. Chem. Biol. 10, 645–654 (2003).

    CAS  PubMed  Google Scholar 

  21. Nasalean, L., Baudrey, S., Leontis, N. B. & Jaeger, L. Controlling RNA self-assembly to form filaments. Nucleic Acids Res. 34, 1381–1392 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Geary, C., Rothemund, P. W. & Andersen, E. S. RNA nanostructures. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    CAS  PubMed  Google Scholar 

  23. Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

    CAS  PubMed  Google Scholar 

  24. Ducani, C., Kaul, C., Moche, M., Shih, W. M. & Hogberg, B. Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides. Nat. Methods 10, 647–652 (2013).

    CAS  PubMed  Google Scholar 

  25. Heiat, M., Ranjbar, R., Latifi, A. M., Rasaee, M. J. & Farnoosh, G. Essential strategies to optimize asymmetric PCR conditions as a reliable method to generate large amount of ssDNA aptamers. Biotechnol. Appl. Biochem. 64, 541–548 (2017).

    CAS  PubMed  Google Scholar 

  26. Veneziano, R. et al. In vitro synthesis of gene-length single-stranded DNA. Sci. Rep. 8, 6548 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Chen, G. et al. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing. J. Am. Chem. Soc. 137, 3844–3851 (2015).

    CAS  PubMed  Google Scholar 

  28. Woo, S. & Rothemund, P. W. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011).

    CAS  PubMed  Google Scholar 

  29. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS  PubMed  Google Scholar 

  30. Jasinski, D., Haque, F., Binzel, D. W. & Guo, P. Advancement of the emerging field of RNA nanotechnology. ACS Nano 11, 1142–1164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, H., Di Gate, R. J. & Seeman, N. C. An RNA topoisomerase. Proc. Natl Acad. Sci. USA 93, 9477–9482 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, D. et al. Synthesizing topological structures containing RNA. Nat. Commun. 8, 14936 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Afonin, K. A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676–682 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Endo, M., Takeuchi, Y., Emura, T., Hidaka, K. & Sugiyama, H. Preparation of chemically modified RNA origami nanostructures. Chem. Eur. J. 20, 15330–15333 (2014).

    CAS  PubMed  Google Scholar 

  35. Han, D. et al. Single-stranded DNA and RNA origami. Science 358, eaao2648 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Severcan, I. et al. A polyhedron made of tRNAs. Nat. Chem. 2, 772–779 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hao, C. et al. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat. Commun. 5, 3890 (2014).

    CAS  PubMed  Google Scholar 

  38. Shu, D., Moll, W. D., Deng, Z., Mao, C. & Guo, P. Bottom-up sssembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett. 4, 1717–1723 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shu, D., Huang, L. P., Hoeprich, S. & Guo, P. Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. J. Nanosci. Nanotechnol. 3, 295–302 (2003).

    CAS  PubMed  Google Scholar 

  40. Dibrov, S. M., McLean, J., Parsons, J. & Hermann, T. Self-assembling RNA square. Proc. Natl Acad. Sci. USA 108, 6405–6408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Boerneke, M. A., Dibrov, S. M. & Hermann, T. Crystal-structure-guided design of self-assembling RNA nanotriangles. Angew. Chem. Int. Ed. 55, 4097–4100 (2016).

    CAS  Google Scholar 

  42. Ohno, H. et al. Synthetic RNA-protein complex shaped like an equilateral triangle. Nat. Nanotechnol. 6, 116–120 (2011).

    CAS  PubMed  Google Scholar 

  43. Khisamutdinov, E. F. et al. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 42, 9996–10004 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    CAS  PubMed  Google Scholar 

  45. Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 16, 531–543 (2006).

    CAS  PubMed  Google Scholar 

  46. Grabow, W. W. & Jaeger, L. RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 47, 1871–1880 (2014).

    CAS  PubMed  Google Scholar 

  47. Geary, C., Chworos, A., Verzemnieks, E., Voss, N. R. & Jaeger, L. Composing RNA nanostructures from a syntax of RNA structural modules. Nano Lett. 17, 7095–7101 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grabow, W. W. et al. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett. 11, 878–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rackley, L. et al. RNA fibers as optimized nanoscaffolds for siRNA coordination and reduced immunological recognition. Adv. Funct. Mater. 28, 1805959 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Zhang, X., Yan, H., Shen, Z. & Seeman, N. C. Paranemic cohesion of topologically-closed DNA molecules. J. Am. Chem. Soc. 124, 12940–12941 (2002).

    CAS  PubMed  Google Scholar 

  51. Afonin, K. A., Cieply, D. J. & Leontis, N. B. Specific RNA self-assembly with minimal paranemic motifs. J. Am. Chem. Soc. 130, 93–102 (2008).

    CAS  PubMed  Google Scholar 

  52. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C. & Dumas, P. Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat. Struct. Biol. 8, 1064–1068 (2001).

    CAS  PubMed  Google Scholar 

  53. Hamada, S. & Murata, S. Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. Angew. Chem. Int. Ed. 48, 6820–6823 (2009).

    CAS  Google Scholar 

  54. Fiore, J. L. & Nesbitt, D. J. An RNA folding motif: GNRA tetraloop-receptor interactions. Q. Rev. Biophys. 46, 223–264 (2013).

    CAS  PubMed  Google Scholar 

  55. Kieken, F., Paquet, F., Brule, F., Paoletti, J. & Lancelot, G. A new NMR solution structure of the SL1 HIV-1Lai loop-loop dimer. Nucleic Acids Res. 34, 343–352 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    CAS  PubMed  Google Scholar 

  57. Dibrov, S. M., Johnston-Cox, H., Weng, Y. H. & Hermann, T. Functional architecture of HCV IRES domain II stabilized by divalent metal ions in the crystal and in solution. Angew. Chem. Int. Ed. 46, 226–229 (2007).

    CAS  Google Scholar 

  58. Woodson, S. A. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9, 104–109 (2005).

    CAS  PubMed  Google Scholar 

  59. Yu, J., Liu, Z., Jiang, W., Wang, G. & Mao, C. De novo design of an RNA tile that self-assembles into a homo-octameric nanoprism. Nat. Commun. 6, 5724 (2015).

    CAS  PubMed  Google Scholar 

  60. Heilman-Miller, S. L. Effect of transcription on folding of the Tetrahymena ribozyme. RNA 9, 722–733 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cruz, J. A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).

    CAS  PubMed  Google Scholar 

  62. Rist, M. & Marino, J. Association of an RNA kissing complex analyzed using 2-aminopurine fluorescence. Nucleic Acids Res. 29, 2401–2408 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ponchon, L. & Dardel, F. Recombinant RNA technology: the tRNA scaffold. Nat. Methods 4, 571–576 (2007).

    CAS  PubMed  Google Scholar 

  64. Ponchon, L., Beauvais, G., Nonin-Lecomte, S. & Dardel, F. A generic protocol for the expression and purification of recombinant RNA in Escherichia coli using a tRNA scaffold. Nat. Protoc. 4, 947–959 (2009).

    CAS  PubMed  Google Scholar 

  65. Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, H. et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. 10, 686–691 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bénas, P. et al. The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. RNA 6, 1347–1355 (2000).

    PubMed  PubMed Central  Google Scholar 

  68. Zhang, H. et al. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA 19, 1226–1237 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, M. et al. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nat. Commun. 9, 2196 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Dobro, M. J. et al. Uncharacterized bacterial structures revealed by electron cryotomography. J. Bacteriol. 199, e00100-17 (2019).

    Google Scholar 

  71. Delebecque, C. J., Lindner, A. B., Silver, P. A. & Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    CAS  PubMed  Google Scholar 

  72. Convery, M. A. et al. Crystal structure of an RNA aptamer–protein complex at 2.8 Å resolution. Nat. Struct. Biol. 5, 133–139 (1998).

    CAS  PubMed  Google Scholar 

  73. Barbault, F., Huynh-Dinh, T., Paoletti, J. & Lanceloti, G. A new peculiar DNA structure: NMR solution structure of a DNA kissing complex. J. Biomol. Struct. Dyn. 19, 649–658 (2002).

    CAS  PubMed  Google Scholar 

  74. Ding, F. et al. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor. Proc. Natl Acad. Sci. USA 108, 7357–7362 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Aldaz-Carroll, L., Tallet, B., Dausse, E., Yurchenko, L. & Toulmé, J.-J. Apical loop−internal loop interactions: a new RNA−RNA recognition motif identified through in vitro selection against RNA hairpins of the hepatitis C virus mRNA. Biochemistry 41, 5883–5893 (2002).

    CAS  PubMed  Google Scholar 

  76. Da Rocha Gomes, S., Dausse, E. & Toulme, J. J. Determinants of apical loop-internal loop RNA-RNA interactions involving the HCV IRES. Biochem. Biophys. Res. Commun. 322, 820–826 (2004).

    PubMed  Google Scholar 

  77. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    CAS  PubMed  Google Scholar 

  79. Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779–784 (2015).

    CAS  PubMed  Google Scholar 

  80. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    CAS  PubMed  Google Scholar 

  82. Carraher, C. E. Jr Seymour/Carraher’s Polymer Chemistry 6th edn (CRC Press, 2003).

  83. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS  PubMed  Google Scholar 

  84. Feldkamp, U. CANADA: designing nucleic acid sequences for nanobiotechnology applications. J. Comput. Chem. 31, 660–663 (2010).

    CAS  PubMed  Google Scholar 

  85. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Darty, K., Denise, A. & Ponty, Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kao, C., Zheng, M. & Rüdisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    CAS  PubMed  Google Scholar 

  89. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.L. acknowledges the HHMI International Student Research Fellowship. C.W.G. acknowledges a fellowship from the Carlsberg Research Foundation. This work was supported by NSF CAREER Award (DMR-1555361) to Y.W., NIH grant (R01GM102489) to J.A.P., ERC grant (683305) to E.S.A. and NSF grants (CCF-1317694 and CMMI-1636364) and ONR grants (N00014-16-1-2159, N00014-17-1-2610 and N00014-18-1-2649) to P.W.K.R. Cryo-EM experiments were conducted with the Structural Biology Facility at Northwestern University, and we thank J. Remis for assistance. We thank N.-s. Li for synthesizing DFHBI. We thank P. Yin for sharing unpublished results based on bKL and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.L. and Y.W. conceived the project. D.L., C.W.G., G.C., Y.S. and M.L. performed the research. C.M., E.S.A., J.A.P., P.W.K.R. and Y.W. supervised the project. D.L., C.W.G., P.W.K.R. and Y.W. wrote the manuscript. All authors analysed the data and commented on the manuscript.

Corresponding authors

Correspondence to Paul W. K. Rothemund or Yossi Weizmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–50 and Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Geary, C.W., Chen, G. et al. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat. Chem. 12, 249–259 (2020). https://doi.org/10.1038/s41557-019-0406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0406-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing