Skip to main content

Advertisement

Log in

Deciphering the neuroprotective and neurogenic potential of soluble amyloid precursor protein alpha (sAPPα)

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Amyloid precursor protein (APP) is a transmembrane protein expressed largely within the central nervous system. Upon cleavage, it does not produce the toxic amyloid peptide (Aβ) only, which is involved in neurodegenerative progressions but via a non-amyloidogenic pathway it is metabolized to produce a soluble fragment (sAPPα) through α-secretase. While a lot of studies are focusing on the role played by APP in the pathogenesis of Alzheimer’s disease, sAPPα is reported to have numerous neuroprotective effects and it is being suggested as a candidate with possible therapeutic potential against Alzheimer’s disease. However, the mechanisms through which sAPPα precisely works remain elusive. We have presented a comprehensive review of how sAPPα is regulating the neuroprotective effects in different biological models. Moreover, we have focused on the role of sAPPα during different developmental stages of the brain, neurogenic microenvironment in the brain and how this metabolite of APP is regulating the neurogenesis which is regarded as a compelling approach to ameliorate the impaired learning and memory deficits in dementia and diseases like Alzheimer’s disease. sAPPα exerts beneficial physiological, biochemical and behavioral effects mitigating the detrimental effects of neurotoxic compounds. It has shown to increase the proliferation rate of numerous cell types and promised the synaptogenesis, neurite outgrowth, cell survival and cell adhesion. Taken together, we believe that further studies are warranted to investigate the exact mechanism of action so that sAPPα could be developed as a novel therapeutic target against neuronal deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APP:

Amyloid precursor protein

sAPPα:

Secreted amyloid precursor protein alpha

ADAM 10:

A disintegrin and metalloproteinase domain-containing protein 10

BACE1:

Beta-secretase enzyme 1

CCI:

Controlled cortical impact

IDE:

Insulin degrading enzyme

NSC:

Neural stem cell

NMDA:

N-Methyl-d-aspartate

SGZ:

Subgranular zone

SVZ:

Sub-ventricular zone

TBI:

Traumatic brain injury

References

  1. Dorard E et al (2018) Soluble amyloid precursor protein alpha interacts with alpha3-Na, K-ATPAse to induce axonal outgrowth but not neuroprotection: evidence for distinct mechanisms underlying these properties. Mol Neurobiol 55:5594–5610

    Article  CAS  PubMed  Google Scholar 

  2. Taylor CJ et al (2008) Endogenous secreted amyloid precursor protein-α regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 31(2):250–260

    Article  CAS  PubMed  Google Scholar 

  3. Moreno L et al (2015) sAβPPα improves hippocampal NMDA-dependent functional alterations linked to healthy aging. J Alzheimers Dis 48(4):927–935

    Article  CAS  PubMed  Google Scholar 

  4. Ring S et al (2007) The secreted β-amyloid precursor protein ectodomain APPsα is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27(29):7817–7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fol R et al (2016) Viral gene transfer of APPsα rescues synaptic failure in an Alzheimer’s disease mouse model. Acta Neuropathol 131(2):247–266

    Article  CAS  PubMed  Google Scholar 

  6. Eriksson PS et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313

    Article  CAS  PubMed  Google Scholar 

  7. Doetsch F et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  CAS  PubMed  Google Scholar 

  8. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7(9):a018812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335

    Article  CAS  PubMed  Google Scholar 

  10. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez-Buylla A, Garcıa-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22(3):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14(2):186–191

    Article  CAS  PubMed  Google Scholar 

  13. Babu H et al (2009) Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling. Front Neurosci 3:1

    Google Scholar 

  14. Sorrells SF et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boldrini M et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(4):589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tartt AN et al (2018) Considerations for assessing the extent of hippocampal neurogenesis in the adult and aging human brain. Cell Stem Cell 23(6):782–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moreno-Jiménez EP et al (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554

    Article  PubMed  CAS  Google Scholar 

  18. Plant LD et al (2003) The production of amyloid β peptide is a critical requirement for the viability of central neurons. J Neurosci 23(13):5531–5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. López-Toledano MA, Shelanski ML (2004) Neurogenic effect of β-amyloid peptide in the development of neural stem cells. J Neurosci 24(23):5439–5444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Heo C et al (2007) Effects of the monomeric, oligomeric, and fibrillar Aβ42 peptides on the proliferation and differentiation of adult neural stem cells from subventricular zone. J Neurochem 102(2):493–500

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Dong C (2009) Aβ40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ 16(3):386

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Z-D et al (2011) The roles of amyloid precursor protein (APP) in neurogenesis: implications to pathogenesis and therapy of Alzheimer disease. Cell Adhes Migr 5(4):280–292

    Article  Google Scholar 

  23. Goldgaber D et al (1987) Isolation, characterization, and chromosomal localization of human brain cDNA clones coding for the precursor of the amyloid of brain in Alzheimer’s disease, Down’s syndrome and aging. J Neural Transm Suppl 24:23–28

    CAS  PubMed  Google Scholar 

  24. Kang J et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106):733

    Article  CAS  PubMed  Google Scholar 

  25. Wasco W et al (1992) Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc Natl Acad Sci 89(22):10758–10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daigle I, Li CA (1993) apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor. Proc Natl Acad Sci 90(24):12045–12049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosen DR et al (1989) A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor. Proc Natl Acad Sci 86(7):2478–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gralle M, Ferreira ST (2007) Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 82(1):11–32

    Article  CAS  PubMed  Google Scholar 

  29. Yoshikai S-I et al (1990) Genomic organization of the human amyloid beta-protein precursor gene. Gene 87(2):257–263

    Article  CAS  PubMed  Google Scholar 

  30. Ponte P et al (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331(6156):525

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka S et al (1988) Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer’s disease. Biochem Biophys Res Commun 157(2):472–479

    Article  CAS  PubMed  Google Scholar 

  32. Haass C, Hung AY, Selkoe DJ (1991) Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci 11(12):3783–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kitaguchi N et al (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331(6156):530

    Article  CAS  PubMed  Google Scholar 

  34. König G et al (1992) Identification and differential expression of a novel alternative splice isoform of the beta A4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells. J Biol Chem 267(15):10804–10809

    PubMed  Google Scholar 

  35. Fan Y et al (2018) Does the genetic feature of the Chinese tree shrew (Tupaia belangeri chinensis) support its potential as a viable model for Alzheimer’s disease research? J Alzheimers Dis 61(3):1015–1028

    Article  CAS  PubMed  Google Scholar 

  36. Murrell J et al (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254(5028):97–99

    Article  CAS  PubMed  Google Scholar 

  37. Wiseman FK et al (2015) A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 16(9):564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee M-H et al (2018) Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563(7733):639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scheuermann S et al (2001) Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer’s disease. J Biol Chem 276(36):33923–33929

    Article  CAS  PubMed  Google Scholar 

  40. Soba P et al (2005) Homo-and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 24(20):3624–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peron R et al (2018) Alpha-secretase ADAM10 regulation: insights into Alzheimer’s disease treatment. Pharmaceuticals 11(1):12

    Article  PubMed Central  CAS  Google Scholar 

  42. Farzan M et al (2000) BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proc Natl Acad Sci 97(17):9712–9717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanabe C et al (2007) ADAM19 is tightly associated with constitutive Alzheimer’s disease APP α-secretase in A172 cells. Biochem Biophys Res Commun 352(1):111–117

    Article  CAS  PubMed  Google Scholar 

  44. Asai M et al (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP α-secretase. Biochem Biophys Res Commun 301(1):231–235

    Article  CAS  PubMed  Google Scholar 

  45. Lopez Sanchez MIG, van Wijngaarden P, Trounce IA (2019) Amyloid precursor protein-mediated mitochondrial regulation and Alzheimer’s disease. Br J Pharmacol 176(18):3464–3474

    Article  CAS  PubMed  Google Scholar 

  46. Andrew RJ et al (2016) A Greek tragedy: the growing complexity of Alzheimer amyloid precursor protein proteolysis. J Biol Chem 291(37):19235–19244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang H et al (2015) Cathepsin L mediates the degradation of novel APP C-terminal fragments. Biochemistry 54(18):2806–2816

    Article  CAS  PubMed  Google Scholar 

  48. Willem M et al (2015) η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526(7573):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laßek M et al (2013) Amyloid precursor proteins are constituents of the presynaptic active zone. J Neurochem 127(1):48–56

    PubMed  Google Scholar 

  50. Tomita S, Kirino Y, Suzuki T (1998) Cleavage of Alzheimer’s amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J Biol Chem 273(11):6277–6284

    Article  CAS  PubMed  Google Scholar 

  51. Placido A et al (2014) The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: implications for Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1842(9):1444–1453

    Article  CAS  Google Scholar 

  52. Skovronsky DM et al (2000) Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network. J Biol Chem 275(4):2568–2575

    Article  CAS  PubMed  Google Scholar 

  53. Vassar R et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741

    Article  CAS  PubMed  Google Scholar 

  54. Huse JT et al (2000) Maturation and endosomal targeting of β-site amyloid precursor protein-cleaving enzyme the Alzheimer’s disease β-secretase. J Biol Chem 275(43):33729–33737

    Article  CAS  PubMed  Google Scholar 

  55. Pastorino L et al (2002) The carboxyl-terminus of BACE contains a sorting signal that regulates BACE trafficking but not the formation of total Aβ. Mol Cell Neurosci 19(2):175–185

    Article  CAS  PubMed  Google Scholar 

  56. Qing H et al (2004) Degradation of BACE by the ubiquitin-proteasome pathway. FASEB J 18(13):1571–1573

    Article  CAS  PubMed  Google Scholar 

  57. Zhang M et al (2012) Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem 120(6):1129–1138

    CAS  PubMed  Google Scholar 

  58. Haass C et al (1992) Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357(6378):500

    Article  CAS  PubMed  Google Scholar 

  59. Chyung JH, Raper DM, Selkoe DJ (2005) γ-Secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. J Biol Chem 280(6):4383–4392

    Article  CAS  PubMed  Google Scholar 

  60. Koo EH et al (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci 87(4):1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Araki W et al (1991) Trophic effect of β-amyloid precursor protein on cerebral cortical neurons in culture. Biochem Biophys Res Commun 181(1):265–271

    Article  CAS  PubMed  Google Scholar 

  62. Mattson MP et al (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10(2):243–254

    Article  CAS  PubMed  Google Scholar 

  63. Goodman Y, Mattson MP (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp Neurol 128(1):1–12

    Article  CAS  PubMed  Google Scholar 

  64. Caillé I et al (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131(9):2173–2181

    Article  PubMed  CAS  Google Scholar 

  65. Young-Pearse TL et al (2008) Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. Neural Dev 3(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Thornton E et al (2006) Soluble amyloid precursor protein α reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res 1094(1):38–46

    Article  CAS  PubMed  Google Scholar 

  67. Corrigan F et al (2012) Evaluation of the effects of treatment with sAPPα on functional and histological outcome following controlled cortical impact injury in mice. Neurosci Lett 515(1):50–54

    Article  CAS  PubMed  Google Scholar 

  68. Dorard E et al (2018) Soluble amyloid precursor protein alpha interacts with alpha3-Na, K-ATPAse to induce axonal outgrowth but not neuroprotection: evidence for distinct mechanisms underlying these properties. Mol Neurobiol 55(7):5594–5610

    Article  CAS  PubMed  Google Scholar 

  69. Obregon D et al (2012) Soluble amyloid precursor protein-alpha modulates beta-secretase activity and amyloid-beta generation. Nat Commun 3:777

    Article  PubMed  CAS  Google Scholar 

  70. Deng J et al (2015) Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3beta signaling pathway. J Neurochem 135(3):630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gakhar-Koppole N et al (2008) Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci 28(5):871–882

    Article  PubMed  Google Scholar 

  72. Greenberg SM, Kosik KS (1995) Secreted beta-APP stimulates MAP kinase and phosphorylation of tau in neurons. Neurobiol Aging 16(3):403–407 (discussion 407-8)

    Article  CAS  PubMed  Google Scholar 

  73. Cheng G et al (2002) Phosphatidylinositol-3-kinase-Akt kinase and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein. Exp Neurol 175(2):407–414

    Article  CAS  PubMed  Google Scholar 

  74. Hasebe N et al (2013) Soluble beta-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS ONE 8(12):e82321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tan VTY et al (2018) Lentivirus-mediated expression of human secreted amyloid precursor protein-alpha prevents development of memory and plasticity deficits in a mouse model of Alzheimer’s disease. Mol Brain 11(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Luo L, Tully T, White K (1992) Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene. Neuron 9(4):595–605

    Article  CAS  PubMed  Google Scholar 

  77. Torroja L et al (1999) The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J Neurosci 19(18):7793–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Leyssen M et al (2005) Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain. EMBO J 24(16):2944–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hornsten A et al (2007) APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proc Natl Acad Sci U S A 104(6):1971–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wiese M, Antebi A, Zheng H (2010) Intracellular trafficking and synaptic function of APL-1 in Caenorhabditis elegans. PLoS ONE 5(9):e12790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Young-Pearse TL et al (2007) A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 27(52):14459–14469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Young-Pearse TL et al (2010) Biochemical and functional interaction of disrupted-in-schizophrenia 1 and amyloid precursor protein regulates neuronal migration during mammalian cortical development. J Neurosci 30(31):10431–10440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Priller C et al (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27):7212–7221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Loffler J, Huber G (1992) Beta-amyloid precursor protein isoforms in various rat brain regions and during brain development. J Neurochem 59(4):1316–1324

    Article  CAS  PubMed  Google Scholar 

  85. Corbett NJ, Hooper NM (2018) Soluble amyloid precursor protein alpha: friend or foe? Adv Exp Med Biol 1112:177–183

    Article  CAS  PubMed  Google Scholar 

  86. Pasciuto E et al (2015) Dysregulated ADAM10-mediated processing of APP during a critical time window leads to synaptic deficits in fragile X syndrome. Neuron 87(2):382–398

    Article  CAS  PubMed  Google Scholar 

  87. Westmark CJ, Malter JS (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 5(3):e52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Furukawa K, Mattson MP (1998) The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 70(5):1876–1886

    Article  CAS  PubMed  Google Scholar 

  89. Anderson JJ et al (1999) Reduced cerebrospinal fluid levels of alpha-secretase-cleaved amyloid precursor protein in aged rats: correlation with spatial memory deficits. Neuroscience 93(4):1409–1420

    Article  CAS  PubMed  Google Scholar 

  90. Lannfelt L et al (1995) Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer’s disease. Nat Med 1(8):829–832

    Article  CAS  PubMed  Google Scholar 

  91. Dobrowolska JA et al (2014) Diurnal patterns of soluble amyloid precursor protein metabolites in the human central nervous system. PLoS ONE 9(3):e89998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Paton JA, Nottebohm FN (1984) Neurons generated in the adult brain are recruited into functional circuits. Science 225(4666):1046–1048

    Article  CAS  PubMed  Google Scholar 

  93. Mu Y, Lee SW, Gage FH (2010) Signaling in adult neurogenesis. Curr Opin Neurobiol 20(4):416–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8(6):481–488

    Article  CAS  PubMed  Google Scholar 

  95. Wang X et al (2016) Traumatic brain injury severity affects neurogenesis in adult mouse hippocampus. J Neurotrauma 33(8):721–733

    Article  PubMed  PubMed Central  Google Scholar 

  96. Stolp HB, Molnar Z (2015) Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci 9:20

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lim DA, Alvarez-Buylla A (2016) The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harb Perspect Biol 8(5):a018820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Leventhal C et al (1999) Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13(6):450–464

    Article  CAS  PubMed  Google Scholar 

  100. Kojima T et al (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28(3):545–554

    PubMed  Google Scholar 

  101. Mirzadeh Z et al (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Seri B et al (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21(18):7153–7160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17(4):385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sun GJ et al (2015) Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc Natl Acad Sci U S A 112(30):9484–9489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shen Q et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3(3):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Delgado AC et al (2014) Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 83(3):572–585

    Article  CAS  PubMed  Google Scholar 

  107. Tavazoie M et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3(3):279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee SW, Clemenson GD, Gage FH (2012) New neurons in an aged brain. Behav Brain Res 227(2):497–507

    Article  PubMed  Google Scholar 

  109. Richardson PM (1994) Ciliary neurotrophic factor: a review. Pharmacol Ther 63(2):187–198

    Article  CAS  PubMed  Google Scholar 

  110. Oliveira SL et al (2013) Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 83(1):76–89

    Article  PubMed  CAS  Google Scholar 

  111. Auld DS, Mennicken F, Quirion R (2001) Nerve growth factor rapidly induces prolonged acetylcholine release from cultured basal forebrain neurons: differentiation between neuromodulatory and neurotrophic influences. J Neurosci 21(10):3375–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weissmiller AM, Wu C (2012) Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener 1(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  113. Aberg MA et al (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20(8):2896–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Angelastro JM et al (2003) Regulated expression of ATF5 is required for the progression of neural progenitor cells to neurons. J Neurosci 23(11):4590–4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jaworski DM, Perez-Martinez L (2006) Tissue inhibitor of metalloproteinase-2 (TIMP-2) expression is regulated by multiple neural differentiation signals. J Neurochem 98(1):234–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361(1473):1545–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127

    Article  CAS  PubMed  Google Scholar 

  118. Mogi M et al (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270(1):45–48

    Article  CAS  PubMed  Google Scholar 

  119. Calissano P, Matrone C, Amadoro G (2010) Nerve growth factor as a paradigm of neurotrophins related to Alzheimer’s disease. Dev Neurobiol 70(5):372–383

    CAS  PubMed  Google Scholar 

  120. Cooper JD, Lindholm D, Sofroniew MV (1994) Reduced transport of [125I]nerve growth factor by cholinergic neurons and down-regulated TrkA expression in the medial septum of aged rats. Neuroscience 62(3):625–629

    Article  CAS  PubMed  Google Scholar 

  121. Frielingsdorf H et al (2007) Nerve growth factor promotes survival of new neurons in the adult hippocampus. Neurobiol Dis 26(1):47–55

    Article  CAS  PubMed  Google Scholar 

  122. Pinnock SB, Herbert J (2008) Brain-derived neurotropic factor and neurogenesis in the adult rat dentate gyrus: interactions with corticosterone. Eur J Neurosci 27(10):2493–2500

    Article  PubMed  PubMed Central  Google Scholar 

  123. Birch AM, Kelly AM (2013) Chronic intracerebroventricular infusion of nerve growth factor improves recognition memory in the rat. Neuropharmacology 75:255–261

    Article  CAS  PubMed  Google Scholar 

  124. Lu H et al (2008) Retrovirus delivered neurotrophin-3 promotes survival, proliferation and neuronal differentiation of human fetal neural stem cells in vitro. Brain Res Bull 77(4):158–164

    Article  CAS  PubMed  Google Scholar 

  125. Kamei N et al (2007) BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine (Phila Pa 1976) 32(12):1272–1278

    Article  Google Scholar 

  126. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chuang TT (2010) Neurogenesis in mouse models of Alzheimer’s disease. Biochim Biophys Acta 1802(10):872–880

    Article  CAS  PubMed  Google Scholar 

  128. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–281

    Article  CAS  PubMed  Google Scholar 

  129. Winner B, Kohl Z, Gage FH (2011) Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 33(6):1139–1151

    Article  PubMed  Google Scholar 

  130. Demars MP et al (2013) Soluble amyloid precursor protein-alpha rescues age-linked decline in neural progenitor cell proliferation. Neurobiol Aging 34(10):2431–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mattson MP (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77(4):1081–1132

    Article  CAS  PubMed  Google Scholar 

  132. Rossjohn J et al (1999) Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat Struct Biol 6(4):327–331

    Article  CAS  PubMed  Google Scholar 

  133. Han P et al (2005) Suppression of cyclin-dependent kinase 5 activation by amyloid precursor protein: a novel excitoprotective mechanism involving modulation of tau phosphorylation. J Neurosci 25(50):11542–11552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Furukawa K et al (1996) Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 379(6560):74–78

    Article  CAS  PubMed  Google Scholar 

  135. Richter MC et al (2018) Distinct in vivo roles of secreted APP ectodomain variants APPsalpha and APPsbeta in regulation of spine density, synaptic plasticity, and cognition. EMBO J 37(11):e98335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Hayashi Y et al (1994) Alzheimer amyloid protein precursor enhances proliferation of neural stem cells from fetal rat brain. Biochem Biophys Res Commun 205(1):936–943

    Article  CAS  PubMed  Google Scholar 

  137. Ohsawa I et al (1999) Amino-terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells. Eur J Neurosci 11(6):1907–1913

    Article  CAS  PubMed  Google Scholar 

  138. Kwak YD et al (2006) Amyloid precursor protein regulates differentiation of human neural stem cells. Stem Cells Dev 15(3):381–389

    Article  CAS  PubMed  Google Scholar 

  139. Demars MP et al (2011) Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Res Ther 2(4):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rohe M et al (2008) Sortilin-related receptor with A-type repeats (SORLA) affects the amyloid precursor protein-dependent stimulation of ERK signaling and adult neurogenesis. J Biol Chem 283(21):14826–14834

    Article  CAS  PubMed  Google Scholar 

  141. Baratchi S et al (2012) Secreted amyloid precursor proteins promote proliferation and glial differentiation of adult hippocampal neural progenitor cells. Hippocampus 22(7):1517–1527

    Article  CAS  PubMed  Google Scholar 

  142. Katakowski M et al (2007) Stroke-induced subventricular zone proliferation is promoted by tumor necrosis factor-alpha-converting enzyme protease activity. J Cereb Blood Flow Metab 27(4):669–678

    Article  CAS  PubMed  Google Scholar 

  143. Sato Y et al (2017) Soluble APP functions as a vascular niche signal that controls adult neural stem cell number. Development 144(15):2730–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Donovan MH et al (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495(1):70–83

    Article  PubMed  Google Scholar 

  145. Dong H et al (2004) Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127(3):601–609

    Article  CAS  PubMed  Google Scholar 

  146. Haughey NJ et al (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83(6):1509–1524

    Article  CAS  PubMed  Google Scholar 

  147. Ermini FV et al (2008) Neurogenesis and alterations of neural stem cells in mouse models of cerebral amyloidosis. Am J Pathol 172(6):1520–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cochet M et al (2013) 5-HT4 receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10. ACS Chem Neurosci 4(1):130–140

    Article  CAS  PubMed  Google Scholar 

  149. Almkvist O et al (1997) Cerebrospinal fluid levels of α-secretase—cleaved soluble amyloid precursor protein mirror cognition in a Swedish family with Alzheimer disease and a gene mutation. Arch Neurol 54(5):641–644

    Article  CAS  PubMed  Google Scholar 

  150. Roch J-M et al (1994) Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid beta/A4 protein precursor. Proc Natl Acad Sci 91(16):7450–7454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li T et al (2009) In-vitro effects of brain-derived neurotrophic factor on neural progenitor/stem cells from rat hippocampus. NeuroReport 20(3):295–300

    Article  CAS  PubMed  Google Scholar 

  152. Scharfman H et al (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192(2):348–356

    Article  CAS  PubMed  Google Scholar 

  153. Korte M et al (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci 92(19):8856–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lu B et al (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401

    Article  CAS  PubMed  Google Scholar 

  155. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311

    Article  CAS  PubMed  Google Scholar 

  156. Rossjohn J et al (1999) Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat Struct Mol Biol 6(4):327

    Article  CAS  Google Scholar 

  157. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc B Biol Sci 361(1473):1545–1564

    Article  CAS  Google Scholar 

  158. Nakata H, Nakamura S (2007) Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling. FEBS Lett 581(10):2047–2054

    Article  CAS  PubMed  Google Scholar 

  159. Waterhouse EG et al (2012) BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J Neurosci 32(41):14318–14330

    Article  PubMed  PubMed Central  Google Scholar 

  160. Xia D-Y et al (2017) PGC-1α or FNDC5 is involved in modulating the effects of Aβ1−42 oligomers on suppressing the expression of BDNF, a beneficial factor for inhibiting neuronal apoptosis, Aβ deposition and cognitive decline of APP/PS1 Tg mice. Front Aging Neurosci 9:65

    PubMed  PubMed Central  Google Scholar 

  161. Nagahara AH et al (2013) Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. J Neurosci 33(39):15596–15602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ohsawa I, Takamura C, Kohsaka S (1997) The amino-terminal region of amyloid precursor protein is responsible for neurite outgrowth in rat neocortical explant culture. Biochem Biophys Res Commun 236(1):59–65

    Article  CAS  PubMed  Google Scholar 

  163. Habtemariam S (2018) The brain-derived neurotrophic factor in neuronal plasticity and neuroregeneration: new pharmacological concepts for old and new drugs. Neural Regen Res 13(6):983

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chan JP et al (2008) Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol Cell Neurosci 39(3):372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gao X, Smith GM, Chen J (2009) Impaired dendritic development and synaptic formation of postnatal-born dentate gyrus granular neurons in the absence of brain-derived neurotrophic factor signaling. Exp Neurol 215(1):178–190

    Article  CAS  PubMed  Google Scholar 

  166. Wang L et al (2015) Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons. J Neurosci 35(22):8384–8393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kwak Y-D et al (2011) Involvement of notch signaling pathway in amyloid precursor protein induced glial differentiation. Eur J Pharmacol 650(1):18–27

    Article  CAS  PubMed  Google Scholar 

  168. Bell KF et al (2008) ADAM-10 over-expression increases cortical synaptogenesis. Neurobiol Aging 29(4):554–565

    Article  CAS  PubMed  Google Scholar 

  169. Bruno MA et al (2009) Increased matrix metalloproteinase 9 activity in mild cognitive impairment. J Neuropathol Exp Neurol 68(12):1309–1318

    Article  CAS  PubMed  Google Scholar 

  170. Mondal AC, Fatima M (2019) Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment. Int J Neurosci 129(3):283–296

    Article  CAS  PubMed  Google Scholar 

  171. Zhang X et al (2014) IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3K/Akt pathway. PLoS ONE 9(12):e113801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Åberg MA et al (2003) IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol Cell Neurosci 24(1):23–40

    Article  PubMed  CAS  Google Scholar 

  173. Mir S et al (2017) IGF-1 mediated neurogenesis involves a novel RIT1/Akt/Sox2 cascade. Sci Rep 7(1):3283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Odaka H et al (2016) Chronic glucocorticoid exposure suppressed the differentiation and survival of embryonic neural stem/progenitor cells: possible involvement of ERK and PI3K/Akt signaling in the neuronal differentiation. Neurosci Res 113:28–36

    Article  CAS  PubMed  Google Scholar 

  175. O’Kusky J, Ye P (2012) Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 33(3):230–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Mathews LS et al (1988) Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology 123(6):2827–2833

    Article  CAS  PubMed  Google Scholar 

  177. Cheng CM et al (2003) Insulin-like growth factor 1 is essential for normal dendritic growth. J Neurosci Res 73(1):1–9

    Article  CAS  PubMed  Google Scholar 

  178. Lin LF et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    Article  CAS  PubMed  Google Scholar 

  179. Pascual A et al (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11(7):755

    Article  CAS  PubMed  Google Scholar 

  180. Pascual A et al (2011) GDNF and protection of adult central catecholaminergic neurons. J Mol Endocrinol 46(3):R83–R92

    Article  CAS  PubMed  Google Scholar 

  181. Kopra JJ et al (2017) Dampened amphetamine-stimulated behavior and altered dopamine transporter function in the absence of brain GDNF. J Neurosci 37(6):1581–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Grondin R et al (2019) GDNF revisited: a novel mammalian cell-derived variant form of GDNF increases dopamine turnover and improves brain biodistribution. Neuropharmacology 147:28–36

    Article  CAS  PubMed  Google Scholar 

  183. Boku S et al (2013) GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3. Biochem Biophys Res Commun 434(4):779–784

    Article  CAS  PubMed  Google Scholar 

  184. Tackenberg C, Nitsch RM (2019) The secreted APP ectodomain sAPPα, but not sAPPβ, protects neurons against Aβ oligomer-induced dendritic spine loss and increased tau phosphorylation. Mol Brain 12(1):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Rice HC et al (2019) Secreted amyloid-β precursor protein functions as a GABABR1a ligand to modulate synaptic transmission. Science 363(6423):eaao4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research is currently supported by grants to GWG from St. Boniface Hospital Research Foundation (SBHF-7069), Winnipeg, Canada. We would like to thank Dr. JA Bhat (University of Rochester, NY) for his constant advice throughout manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon W. Glazner.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, N.J., Glazner, G.W. Deciphering the neuroprotective and neurogenic potential of soluble amyloid precursor protein alpha (sAPPα). Cell. Mol. Life Sci. 77, 2315–2330 (2020). https://doi.org/10.1007/s00018-019-03404-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03404-x

Keywords

Navigation