Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids

Abstract

Medium-chain fatty acids (MCFAs; C6–C12) are valuable molecules used for biofuel and oleochemical production; however, it is challenging to synthesize these fatty acids efficiently using microbial biocatalysts due to the cellular toxicity of MCFAs. In this study, both the endogenous fatty acid synthase (FAS) and an orthogonal bacterial type I FAS were engineered for MCFA production in the yeast Saccharomyces cerevisiae. To improve cellular tolerance to toxic MCFAs, we performed directed evolution of the membrane transporter Tpo1 and strain adaptive laboratory evolution, which elevated the MCFA production by 1.3 ± 0.3- and 1.7 ± 0.2-fold, respectively. We therefore further engineered the highly resistant strain to augment the metabolic flux towards MCFAs. This multidimensional engineering of the yeast at the single protein/enzyme level, the pathway level and the cellular level, combined with an optimized cultivation process, resulted in the production of >1 g l−1 extracellular MCFAs—a more than 250-fold improvement over the original strain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering microbial FASI enzymes for MCFA synthesis.
Fig. 2: Engineering the membrane transporter Tpo1.
Fig. 3: Improving cell fitness via ALE.
Fig. 4: MCFAs produced by engineered yeast cell factories.

Similar content being viewed by others

Data availability

All genomic sequences are available at NCBI under BioProject accession code PRJNA542834. The data that support the findings of this study are available from the corresponding author upon reasonable request. All plasmids and strains used in this study are available from the corresponding author under a material transfer agreement.

References

  1. Biermann, U., Bornscheuer, U., Meier, M. A. R., Metzger, J. O. & Schäfer, H. J. Oils and fats as renewable raw materials in chemistry. Angew. Chem. Int. Ed. 50, 3854–3871 (2011).

    CAS  Google Scholar 

  2. Sarria, S., Kruyer, N. S. & Peralta-Yahya, P. Microbial synthesis of medium-chain chemicals from renewables. Nat. Biotechnol. 35, 1158–1166 (2017).

    CAS  PubMed  Google Scholar 

  3. Hernández Lozada, N. J. et al. Highly active C8-acyl-ACP thioesterase variant isolated by a synthetic selection strategy. ACS Synth. Biol. 7, 2205–2215 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).

    CAS  PubMed  Google Scholar 

  5. Pfleger, B. F., Gossing, M. & Nielsen, J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab. Eng. 29, 1–11 (2015).

    CAS  PubMed  Google Scholar 

  6. Töpfer, R., Martini, N. & Schell, J. Modification of plant lipid synthesis. Science 268, 681–686 (1995).

    PubMed  Google Scholar 

  7. Jing, F. et al. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem. 12, 44 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Val, D., Banu, G., Seshadri, K., Lindqvist, Y. & Dehesh, K. Re-engineering ketoacyl synthase specificity. Structure 8, 565–566 (2000).

    CAS  PubMed  Google Scholar 

  9. Joshi, A. K., Witkowski, A., Berman, H. A., Zhang, L. & Smith, S. Effect of modification of the length and flexibility of the acyl carrier protein–thioesterase interdomain linker on functionality of the animal fatty acid synthase. Biochemistry 44, 4100–4107 (2005).

    CAS  PubMed  Google Scholar 

  10. Gajewski, J., Pavlovic, R., Fischer, M., Boles, E. & Grininger, M. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat. Commun. 8, 14650 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Zhu, Z. et al. Expanding the product portfolio of fungal type I fatty acid synthases. Nat. Chem. Biol. 13, 360–362 (2017).

    CAS  PubMed  Google Scholar 

  12. Gajewski, J. et al. Engineering fatty acid synthases for directed polyketide production. Nat. Chem. Biol. 13, 363–365 (2017).

    CAS  PubMed  Google Scholar 

  13. Torella, J. P. et al. Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc. Natl. Acad. Sci. USA 110, 11290–11295 (2013).

    CAS  PubMed  Google Scholar 

  14. Xu, P., Qiao, K., Ahn, W. S. & Stephanopoulos, G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl. Acad. Sci. USA 113, 10848–10853 (2016).

    CAS  PubMed  Google Scholar 

  15. Leber, C., Choi, J. W., Polson, B. & Da Silva, N. A. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae. Biotechnol. Bioeng. 113, 895–900 (2016).

    CAS  PubMed  Google Scholar 

  16. Heil, C. S., Wehrheim, S. S., Paithankar, K. S. & Grininger, M. Fatty acid biosynthesis: chain-length regulation and control. ChemBioChem 20, 2298–2321 (2019).

    CAS  PubMed  Google Scholar 

  17. Dellomonaco, C., Clomburg, J. M., Miller, E. N. & Gonzalez, R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011).

    CAS  PubMed  Google Scholar 

  18. Felnagle, E. A., Chaubey, A., Noey, E. L., Houk, K. N. & Liao, J. C. Engineering synthetic recursive pathways to generate non-natural small molecules. Nat. Chem. Biol. 8, 518–526 (2012).

    CAS  PubMed  Google Scholar 

  19. Yuzawa, S. et al. Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat. Commun. 9, 4569 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Teixeira, P. G., Siewers, V. & Nielsen, J. Quantitative in vivo evaluation of the reverse β-oxidation pathway for fatty acid production in Saccharomyces cerevisiae. Preprint at http://www.biorxiv.org/content/10.1101/201616v1 (2017).

  21. Boehringer, D., Ban, N. & Leibundgut, M. 7.5-Å cryo-EM structure of the mycobacterial fatty acid synthase. J. Mol. Biol. 425, 841–849 (2013).

    CAS  PubMed  Google Scholar 

  22. Zhou, Y. J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7, 11709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P. & Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35, 173–177 (2017).

    CAS  PubMed  Google Scholar 

  24. Yu, T. et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174, 1549–1558 (2018).

    CAS  PubMed  Google Scholar 

  25. Eriksen, D. T., HamediRad, M., Yuan, Y. & Zhao, H. An orthogonal fatty acid biosynthetic pathway improves fatty acid ethyl ester production in Saccharomyces cerevisiae. ACS Synth. Biol. 4, 808–814 (2015).

    CAS  PubMed  Google Scholar 

  26. Haushalter, R. W. et al. Development of an orthogonal fatty acid biosynthesis system in E. coli for oleochemical production. Metab. Eng. 30, 1–6 (2015).

    CAS  PubMed  Google Scholar 

  27. Jarboe, L. R., Liu, P. & Royce, L. A. Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr. Opin. Chem. Eng. 1, 38–42 (2011).

    CAS  Google Scholar 

  28. Legras, J. L. et al. Activation of two different resistance mechanisms in Saccharomyces cerevisiae upon exposure to octanoic and decanoic acids. Appl. Environ. Microbiol. 76, 7526–7535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Borrull, A., López-Martínez, G., Poblet, M., Cordero-Otero, R. & Rozès, N. New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae. Yeast 32, 451–460 (2015).

    CAS  PubMed  Google Scholar 

  30. Liu, P. et al. Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 97, 3239–3251 (2013).

    CAS  PubMed  Google Scholar 

  31. Bell, G. H. The action of monocarboxylic acids on Candida tropicalis growing on hydrocarbon substrates. Antonie Leeuwenhoek 37, 385–400 (1971).

    CAS  PubMed  Google Scholar 

  32. McDonough, V., Stukey, J. & Cavanagh, T. Mutations in erg4 affect the sensitivity of Saccharomyces cerevisiae to medium-chain fatty acids. Biochim. Biophys. Acta 1581, 109–118 (2002).

    CAS  PubMed  Google Scholar 

  33. Zhu, Z. et al. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metab. Eng. 44, 81–88 (2017).

    CAS  PubMed  Google Scholar 

  34. Mukhopadhyay, A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol. 23, 498–508 (2015).

    CAS  PubMed  Google Scholar 

  35. Keasling, J. D. Manufacturing molecules through metabolic engineering. Science 330, 1355–1358 (2010).

    CAS  Google Scholar 

  36. Tan, Z., Black, W., Yoon, J. M., Shanks, J. V. & Jarboe, L. R. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF. Microb. Cell Fact. 16, 38 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Wu, J. et al. Improving medium chain fatty acid production in Escherichia coli by multiple transporter engineering. Food Chem. 272, 628–634 (2019).

    CAS  PubMed  Google Scholar 

  38. Dunlop, M. J. et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol. Syst. Biol. 7, 487 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Fisher, M. A. et al. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth. Biol. 3, 30–40 (2014).

    CAS  PubMed  Google Scholar 

  40. Portnoy, V. A., Bezdan, D. & Zengler, K. Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22, 590–594 (2011).

    CAS  PubMed  Google Scholar 

  41. Royce, L. A. et al. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 29, 180–188 (2015).

    CAS  PubMed  Google Scholar 

  42. Lee, J. W. et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8, 536–546 (2012).

    CAS  PubMed  Google Scholar 

  43. Grininger, M. Perspectives on the evolution, assembly and conformational dynamics of fatty acid synthase type I (FAS I) systems. Curr. Opin. Struct. Biol. 25, 49–56 (2014).

    CAS  PubMed  Google Scholar 

  44. Yu, T. et al. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat. Commun. 8, 15587 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. González-Ramos, D. et al. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol. Biofuels 9, 173 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Albertsen, M., Bellahn, I., Krämer, R. & Waffenschmidt, S. Localization and function of the yeast multidrug transporter Tpo1p. J. Biol. Chem. 278, 12820–12825 (2003).

    CAS  PubMed  Google Scholar 

  47. Sá-Correia, I., dos Santos, S. C., Teixeira, M. C., Cabrito, T. R. & Mira, N. P. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol. 17, 22–31 (2009).

    PubMed  Google Scholar 

  48. Fletcher, E. et al. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metab. Eng. 39, 19–28 (2017).

    CAS  PubMed  Google Scholar 

  49. Tong, J., Manik, M. K., Yang, H. & Im, Y. J. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family. Biochim. Biophys. Acta 1861, 928–939 (2016).

    CAS  PubMed  Google Scholar 

  50. Jessop-Fabre, M. M. et al. EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR–Cas9. Biotechnol. J. 11, 1110–1117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodriguez, S. et al. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microb. Cell Fact. 15, 48 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl. Acad. Sci. USA 109, E111–E118 (2012).

    CAS  PubMed  Google Scholar 

  53. Blazeck, J., Garg, R., Reed, B. & Alper, H. S. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol. Bioeng. 109, 2884–2895 (2012).

    CAS  PubMed  Google Scholar 

  54. Hoshida, H., Kondo, M., Kobayashi, T., Yarimizu, T. & Akada, R. 5′-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 101, 241–251 (2017).

    CAS  PubMed  Google Scholar 

  55. Kim, C.-W. et al. Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis. Proc. Natl. Acad. Sci. USA 107, 9626–9631 (2010).

    CAS  PubMed  Google Scholar 

  56. Hunkeler, M., Stuttfeld, E., Hagmann, A., Imseng, S. & Maier, T. The dynamic organization of fungal acetyl-CoA carboxylase. Nat. Commun. 7, 11196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei, J. et al. A unified molecular mechanism for the regulation of acetyl-CoA carboxylase by phosphorylation. Cell Discov. 2, 16044 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shi, S., Chen, Y., Siewers, V. & Nielsen, J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio 5, e01130-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Choi, J. W. & Da Silva, N. A. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. J. Biotechnol. 187, 56–59 (2014).

    CAS  PubMed  Google Scholar 

  60. Besada-Lombana, P. B., Fernandez-Moya, R., Fenster, J. & Da Silva, N. A. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnol. Bioeng. 114, 1531–1538 (2017).

    CAS  PubMed  Google Scholar 

  61. Sumper, M., Riepertinger, C., Lynen, F. & Oesterhelt, D. Die synthese verschiedener carbonsäuren durch den multienzymkomplex der fettsäuresynthese aus hefe und die erklärung ihrer bildung. Eur. J. Biochem. 10, 377–387 (1969).

    CAS  PubMed  Google Scholar 

  62. Zhu, Z. et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat. Commun. 3, 1112 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Swarbrick, C. M. D., Perugini, M. A., Cowieson, N. & Forwood, J. K. Structural and functional characterization of TesB from Yersinia pestis reveals a unique octameric arrangement of hotdog domains. Acta Crystallogr. D 71, 986–995 (2015).

    CAS  PubMed  Google Scholar 

  64. Scharnewski, M., Pongdontri, P., Mora, G., Hoppert, M. & Fulda, M. Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J. 275, 2765–2778 (2008).

    CAS  PubMed  Google Scholar 

  65. Runguphan, W. & Keasling, J. D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 21, 103–113 (2014).

    CAS  PubMed  Google Scholar 

  66. Scherrer, R. A. & Howard, S. M. Use of distribution coefficients in quantitative structure–activity relations. J. Med. Chem. 20, 53–58 (1977).

    CAS  PubMed  Google Scholar 

  67. Ghosh, A. et al. 13C metabolic flux analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids. Front. Bioeng. Biotechnol. 4, 76 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Xiao, Y., Bowen, C. H., Liu, D. & Zhang, F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat. Chem. Biol. 12, 339–344 (2016).

    CAS  PubMed  Google Scholar 

  69. Schweizer, E. & Hofmann, J. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol. Mol. Biol. Rev. 68, 501–517 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Swinnen, S., Thevelein, J. M. & Nevoigt, E. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res. 12, 215–227 (2012).

    CAS  PubMed  Google Scholar 

  71. Qi, Y., Liu, H., Chen, X. & Liu, L. Engineering microbial membranes to increase stress tolerance of industrial strains. Metab. Eng. 53, 24–34 (2019).

    CAS  PubMed  Google Scholar 

  72. Meynial-Salles, I., Dorotyn, S. & Soucaille, P. A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol. Bioeng. 99, 129–135 (2008).

    CAS  PubMed  Google Scholar 

  73. Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    CAS  PubMed  Google Scholar 

  74. Shao, Z., Zhao, H. & Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37, e16 (2009).

    PubMed  Google Scholar 

  75. Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    CAS  PubMed  Google Scholar 

  76. Jensen, N. B. et al. EasyClone: method for iterative chromosomal integration of multiple genes Saccharomyces cerevisiae. FEMS Yeast Res. 14, 238–248 (2014).

    CAS  PubMed  Google Scholar 

  77. Jenjaroenpun, P. et al. Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Res. 46, e38 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Novo Nordisk Foundation (grant no. NNF10CC1016517), Energimyndigheten, the Knut and Alice Wallenberg Foundation and the Swedish Foundation for Strategic Research. This project has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation (grant agreement no. 720824). We thank Y. J. Zhou, F. David and T. Yu for critical discussion, A. Hoffmeyer for genome sequencing, and the Chalmers Mass Spectrometry Infrastructure for assistance with metabolite analysis.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and J.N. conceived this study. Z.Z. designed and performed most of the experiments, analysed the data and drafted the manuscript. Y.H. engineered the Tpo1 transporter and assisted with metabolite analysis and fermentation. V.S. and Y.C. assisted with data analysis and interpretation. P.G.T. participated in the ALE. R.P. analysed the genome sequencing data. All authors revised and approved the manuscript.

Corresponding author

Correspondence to Jens Nielsen.

Ethics declarations

Competing interests

V.S. and J.N. are shareholders in Biopetrolia AB. All other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Tables 1–5 and references.

Reporting Summary

Supplementary Data 1

Genetic mutations during ALE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Hu, Y., Teixeira, P.G. et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nat Catal 3, 64–74 (2020). https://doi.org/10.1038/s41929-019-0409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0409-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research