Molecular Plant
Volume 13, Issue 5, 4 May 2020, Pages 732-744
Journal home page for Molecular Plant

Research Article
Hydrogen Sulfide Positively Regulates Abscisic Acid Signaling through Persulfidation of SnRK2.6 in Guard Cells

https://doi.org/10.1016/j.molp.2020.01.004Get rights and content
Under an Elsevier user license
open archive

Abstract

The phytohormone abscisic acid (ABA) plays pivotal roles in triggering stomatal closure and facilitating adaptation of plants to drought stress. Hydrogen sulfide (H2S), a small signaling gas molecule, is involved in ABA-dependent stomatal closure. However, how H2S regulates ABA signaling remains largely unclear. Here, we show that ABA induces the production of H2S catalyzed by L-CYSTEINE DESULFHYDRASE1 (DES1) in guard cells, and H2S in turn positively regulates ABA signaling through persulfidation of Open Stomata 1 (OST1)/SNF1-RELATED PROTEIN KINASE2.6 (SnRK2.6). Two cysteine (Cys) sites, Cys131 and Cys137, which are exposed on the surface of SnRK2.6 and close to the activation loop, were identified to be persulfidated, which promotes the activity of SnRK2.6 and its interaction with ABA response element-binding factor 2 (ABF2), a transcription factor acting downstream of ABA signaling. When Cys131, Cys137, or both residues in SnRK2.6 were substituted with serine (S), H2S-induced SnRK2.6 activity and SnRK2.6–ABF2 interaction were partially (SnRK2.6C131S and SnRK2.6C137S) or completely (SnRK2.6C131SC137S) compromised. Introduction of SnRK2.6C131S, SnRK2.6C137S, or SnRK2.6C131SC137S into the ost1-3 mutant could not rescue the mutant phenotype: less sensitivity to ABA- and H2S-induced stomatal closure and Ca2+ influx as well as increased water loss and decreased drought tolerance. Taken together, our study reveals a novel post-translational regulatory mechanism of ABA signaling whereby H2S persulfidates SnRK2.6 to promote ABA signaling and ABA-induced stomatal closure.

Key words

H2S
ABA
persulfidation
Ca2+
stomatal closure
drought

Cited by (0)

Published by the Molecular Plant Shanghai Editorial Office in association with Cell Press, an imprint of Elsevier Inc., on behalf of CSPB and IPPE, CAS.

3

These authors contributed equally to this article.