Skip to main content
Log in

Aerobic oxidation of alcohol by model complexes relevant to metal site galactose oxidase: role of copper(I) intermediate, evidence for the generation of end-on copper(II)–OOH species and catalytic promiscuity for oxidation of benzyl alcohol, catechol and o-aminophenol

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Tridentate ligands having meridional NNO donor centres were designed and synthesized mimicking the copper coordination in the metal site of galactose oxidase enzyme. Mononuclear copper complexes [Cu(L1)Cl] (1) (L1H = (E)-2-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)phenol), [Cu(L2)Cl] (2) (L2H = (E)-4-methyl-2-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)phenol), [Cu(L3)Cl] (3) (L3H = (E)-1-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)naphthalen-2-ol), [Cu(L4)Cl] (4) (L4H = (E)-2-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)phenol), [Cu(L5)Cl] (5) (L5H = (E)-2-((2-phenyl-2-(pyridin-2-yl)hydrazono)methyl)phenol), and [Cu(L6)Cl] (6) (L6H = (E)-2,4-di-tert-butyl-6-(((pyridin-2-ylmethyl)imino)methyl)phenol) were synthesized and characterized. Molecular structure of complex 3 was determined by single crystal X-ray crystallography. Phenoxyl radical complexes were generated in solution via chemical oxidation using ceric ammonium nitrate (CAN), and the radical complexes were characterized by UV–Vis–NIR spectrophotometer. DFT calculations were performed at B3LYP level to optimize the ground-state molecular geometry of the complexes. To understand the electronic properties and absorption spectra of the complexes, TD-DFT calculations were executed for phenoxyl radical complexes considering triplet as well as singlet spin states. Alcohol oxidation was examined utilizing complexes 16 as catalyst, and importance of stabilization of Cu(I) intermediate was scrutinized and generation of Cu(II)–OOH was examined. Catalytic promiscuity for catechol oxidase and phenoxazinone synthase activity by complexes (15) was investigated. Theoretical calculations and ESI–MS spectral studies were performed during oxidation chemistry of benzyl alcohol, catechol and o-amino phenol to support the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 4
Fig. 5
Scheme 7

Similar content being viewed by others

References

  1. Xie L, Donk WAVD (2001) Proc Natl Acad Sci 98:12863–12865

    CAS  PubMed  Google Scholar 

  2. Firbank SJ, Rogers MS, Wilmot CM, Dooley DM, Halcrow MA, Knowles PF, McPherson MJ, Phillips SEV (2001) Proc Natl Acad Sci 98:12932–12937

    CAS  PubMed  Google Scholar 

  3. Whittaker JW (2003) Chem Rev 103:2347–2364

    CAS  PubMed  Google Scholar 

  4. Wang Y, DuBois JL, Hedman B, Hodgson KO, Stack TDP (1998) Science 279:537–540

    CAS  PubMed  Google Scholar 

  5. Whittaker JW (2005) Arch Biochem Biophys 433:227–239

    CAS  PubMed  Google Scholar 

  6. Lyons CT, Stack TDP (2013) Coord Chem Rev 257:528–540

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Parmeggiani C, Cardona F (2012) Green Chem 14:547–564

    CAS  Google Scholar 

  8. Yin D, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin JG, Henrissat B, Walton PH, Davies GJ, Brumer H (2015) Nat Commun 6:10197

    CAS  PubMed  Google Scholar 

  9. Que L, Tolman WB (2008) Nature 455:333–340

    CAS  PubMed  Google Scholar 

  10. Nairn AK, Archibald SJ, Bhalla R, Gilbert BC, MacLean EJ, Teat SJ, Walton PH (2006) Dalton Trans 1:172–176

    Google Scholar 

  11. Chaudhuri P, Hess M, Weyhermuller T, Wieghardt K (1999) Angew Chem 38:1095–1098

    CAS  Google Scholar 

  12. Asami K, Takashina A, Kobayashi M, Iwatsuki S, Yajima T, Kochem A, Gastel MV, Tani F, Kohzuma T, Thomas F, Shimazaki Y (2014) Dalton Trans 43:2283–2293

    CAS  PubMed  Google Scholar 

  13. Itoh S, Taki M, Takayama SE, Nagatomo S, Kitagawa T, Sakurada N, Arakawa R, Fukuzumi S (1999) Angew Chem 38:2774–2776

    CAS  Google Scholar 

  14. Itoh S, Taki M, Fukuzumi S (2000) Coord Chem Rev 198:3–20

    CAS  Google Scholar 

  15. Arion VB, Platzer S, Rapta P, Machata P, Breza M, Vegh D, Dunsch L, Telser J, Shova S, Leod TCOM, Pombeiro AJL (2013) Inorg Chem 52:7524–7540

    CAS  PubMed  Google Scholar 

  16. Carrillo A, Philouze C, Gastel MV, Hardemare ADMD, Thomas F (2014) Eur J Inorg Chem 2014:4263–4267

    Google Scholar 

  17. Porter TR, Capitao D, Kaminsky W, Qian Z, Mayer JM (2016) Inorg Chem 55:5467–5475

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dey SK, Mukherjee A (2016) Coord Chem Rev 310:80–115

    CAS  Google Scholar 

  19. Dhara AK, Singh UP, Ghosh K (2016) Inorg Chem Front 3:1543–1558

    CAS  Google Scholar 

  20. Ghosh K, Kumar P, Mohan V, Kasiri S, Mandal SS (2012) Inorg Chem 51:3343–3345

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghosh K, Kumar P, Tyagi N, Singh UP, Aggarwal V, Baratto MC (2010) Eur J Med Chem 45:3770–3779

    CAS  PubMed  Google Scholar 

  22. Whittaker JW (1994) Metal Ions Biol Syst 30:315

    CAS  Google Scholar 

  23. Wang Y, Stack TDP (1996) J Am Chem Soc 118:13097–13098

    CAS  Google Scholar 

  24. Mahadevan V, Dubois JL, Hedman B, Hodgson KO, Stack TDP (1999) J Am Chem Soc 121:5583–5584

    CAS  Google Scholar 

  25. Sheldon RA, Arends IWCE, Brink GJT, Dijksman A (2002) Acc Chem Res 35:774–781

    CAS  PubMed  Google Scholar 

  26. Lu ZL, Costa JS, Roubeau O, Mutikainen I, Turpeinen U, Teat SJ, Gamez P, Reedijk J (2008) Dalton Trans 27:3567–3573

    Google Scholar 

  27. Jiang N, Ragauskas AJ (2006) J Org Chem 71:7087–7090

    CAS  PubMed  Google Scholar 

  28. Sheldon RA, Arends IWCE (2004) Adv Synth Catal 346:1051–1071

    CAS  Google Scholar 

  29. Semmelhack MF, Schmid CR, Cortes DA, Chou CS (1984) J Am Chem Soc 106:3374–3376

    CAS  Google Scholar 

  30. Dijksman A, Arends I, Sheldon RA (2003) Org Biomol Chem 1:3232–3237

    CAS  PubMed  Google Scholar 

  31. Gamez P, Arends IWCE, Reedijk J, Sheldon RA (2003) Chem Commun 19:2414–2415

    Google Scholar 

  32. Gamez P, Arends IWCE, Sheldon RA, Reedijk J (2004) Adv Synth Catal 346:805–811

    CAS  Google Scholar 

  33. Jia L, Chen K, Wang C, Yao J, Chen Z, Li H (2014) RSC Adv 4:15590–15596

    CAS  Google Scholar 

  34. Bailey WF, Bobbitt JM, Wiberg KB (2007) J Org Chem 72:4504–4509

    CAS  PubMed  Google Scholar 

  35. Arends IWCE, Li Y, Ausan R, Sheldon RA (2006) Tetrahedron Lett 62:6659–6665

    CAS  Google Scholar 

  36. Dijksman A, Marino-Gonzalez A, Payeras AM, Arends IWCE, Sheldon RA (2001) J Am Chem Soc 123:6826–6833

    CAS  PubMed  Google Scholar 

  37. Gamez P, Arends IWCE, Reedijk J, Sheldon RA (2003) Chem Commun 19:2414–2415

    Google Scholar 

  38. Miniscia F, Recupero F, Cecchetto A, Gambarotti C, Punta C, Faletti R, Paganelli R, Pedulli GF (2004) Eur J Org Chem 109:1434–1437

    Google Scholar 

  39. Miniscia F, Recupero F, Pedullib GF, Lucarini M (2003) J Mol Catal A Chem 204:63–75

    Google Scholar 

  40. Koval IA, Gamez P, Belle C, Selmeczi K, Reedijk J (2006) Chem Soc Rev 35:814–840

    CAS  PubMed  Google Scholar 

  41. Dhara AK, Kumar K, Kumari S, Singh UP, Ghosh K (2016) Chem Sel 1:3933–3937

    CAS  Google Scholar 

  42. Ghosh T, Adhikary J, Chakraborty P, Sukul PK, Jana MS, Mondal TK, Zangrando E, Das D (2014) Dalton Trans 43:841–852

    CAS  PubMed  Google Scholar 

  43. Gerdemann C, Eicken C, Krebs B (2002) Acc Chem Res 35:183–191

    CAS  PubMed  Google Scholar 

  44. Smith AW, Artigas AC, Wang M, Allen JP, Francisco WA (2006) Biochemistry 45:4378–4387

    CAS  PubMed  Google Scholar 

  45. Belle C, Beguin C, Gautier-Luneau I, Hamman S, Philouze C, Pierre JL, Thomas F, Torelli S (2002) Inorg Chem 41:479–491

    CAS  PubMed  Google Scholar 

  46. Torelli S, Belle C, Gautier-Luneau I, Pierre JL, Saint-Aman E, Latour JM, Le Pape L, Luneau D (2000) Inorg Chem 39:3526–3536

    CAS  PubMed  Google Scholar 

  47. Bhardwaj VK, Aliaga-Alcalde N, Corbella M, Hundal G (2010) Inorg Chim Acta 363:97–106

    CAS  Google Scholar 

  48. Ghosh K, Kumar P, Tyagi N (2011) Inorg Chim Acta 375:77–83

    CAS  Google Scholar 

  49. Eicken C, Krebs B, Sacchettini JC (1999) Curr Opin Struct Biol 9:677–683

    CAS  PubMed  Google Scholar 

  50. Banu KS, Chattopadhyay T, Banerjee A, Bhattacharaya S, Suresh E, Nethaji M, Zangrando E, Das D (2008) Inorg Chem 47:7083–7093

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KG is thankful to SERB-DST(SR/S1/IC-47/2012 dated Oct 2013), New Delhi, India, for financial assistance. AKD, KK are thankful to UGC and SK is thankful to CSIR for financial assistance. We are thankful to Central Instrumental Facility, IIT, Roorkee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Ghosh.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, A.K., Kumar, K., Kumari, S. et al. Aerobic oxidation of alcohol by model complexes relevant to metal site galactose oxidase: role of copper(I) intermediate, evidence for the generation of end-on copper(II)–OOH species and catalytic promiscuity for oxidation of benzyl alcohol, catechol and o-aminophenol. Transit Met Chem 45, 159–172 (2020). https://doi.org/10.1007/s11243-019-00367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00367-7

Navigation