Skip to main content
Log in

Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient utilization of lignocellulose is an economically relevant practice for improving the financial prospects of biorefineries. Lignocellulose contains significant levels of xylose that can be converted into valuable xylonic acid. However, some inhibitors of bioconversion processes are produced after pretreatment. Xylonic acid production in bacteria, such as Gluconobacter oxydans, is hindered by poor bacterial tolerance to contaminants. Therefore, in order to enhance bacterial resistance to inhibitors, a recombinant strain of G. oxydans was created by the introduction of the thioredoxin gene. Thioredoxin is a key protein responsible for maintaining cellular redox potential and is critical to the conversion of xylose to xylonate. Overexpression of thioredoxin was confirmed at the enzymatic level, while the recombinant strain showed increased catalytic activity when inhibitors, such as formic acid or p-hydroxybenzaldehyde (PHBA), were added to the synthetic xylose medium (17% and 7% improvement in xylonic acid yield, respectively). To probe the molecular mechanism behind the recombinant strain response to inhibitors, the expression levels of various genes were analyzed by qRT-PCR, which revealed five differentially expressed genes (DEGs) upon exposure to formic acid or PHBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chun, B. W., Dair, B., Macuch, P. J., Wiebe, D., Porteneuve, C., & Jeknavorian, A. (2006). The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Applied Biochemistry and Biotechnology, 129-132, 645–658.

    CAS  PubMed  Google Scholar 

  2. Chun, B. W., Dair, B., Porteneuve, C. B., Jeknavorian, A. A., Cheung, J. H. W., Roberts, L. R. (2005). Beneficiated water reducing compositions. European Patent EP1494990

  3. Millner, O. E., Clarke, R. P., Titus, G. R. (1994). Clarifiers for polyolefins and polyolefin compositions containing same. US patent 5302643,12 Apr 1994, DOI: https://doi.org/10.1300/J010v19n03_08.

  4. Pujos, P., Jijakli, M. H. (2014). Compositions for use against one or more pathogens. European Patent EP1802196

  5. Markham, R. G. (1991). Compositions and Methods for Administering Therapeutically Active Compounds. U.S.Patent5070085.

  6. Tomoda, Y., Hanaoka, A., Yasuda, T., Takayama, T., Hiwatashi, A.(2004). Method of decreasing acrylamide in food cooked under heat. US patent 200413737,8 Jul 2004, DOI: https://doi.org/10.1007/s00268-004-7475-4

  7. Akinterinwa, O., & Cirino, P. C. (2009). Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metabolic Engineering, 11, 48–55. https://doi.org/10.1016/j.ymben.2008.07.006.

    Article  CAS  PubMed  Google Scholar 

  8. Nair, N. U., & Zhao, H. (2010). Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metabolic Engineering, 12(5), 462–468. https://doi.org/10.1016/j.ymben.2010.04.005.

    Article  CAS  PubMed  Google Scholar 

  9. Vleet, J. H. V., & Jeffries, T. W. (2009). Yeast metabolic engineering for hemicellulosic ethanol production. Current Opinion in Biotechnology, 20, 300–306. https://doi.org/10.1016/j.copbio.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  10. Niu, W., Molefe, M. N., & Forst, J. W. (2003). Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. Journal of the American Chemical Society, 125(43), 12998–12999. https://doi.org/10.1021/ja036391+.

    Article  CAS  PubMed  Google Scholar 

  11. Buchert, J. (1990). Biotechnical oxidation of D-xylose and hemicellulose hydrolyzates by Gluconobacter oxydans. Dissertation, Helsinki University of Technology.

  12. Zhou, X., Lü, S., Xu, Y., Mo, Y., & Yu, S. (2015). Improving the performance of cell biocatalysis and the productivity of xylonic acid using a compressed oxygen supply. Biochemical Engineering Journal, 93, 196–199.

    Article  CAS  Google Scholar 

  13. Gupta, A., Singh, V. K., Qazi, G. N., & Kumar, A. (2001). Gluconobacter oxydans: its biotechnological applications. Journal of Molecular Microbiology and Biotechnology, 3, 445–456.

    CAS  PubMed  Google Scholar 

  14. Miao, Y., Shen, Y., & Xu, Y. (2017). Effects of inhibitors on the transcriptional profiling of Gluconobater oxydans NL71 genes after biooxidation of xylose into xylonate. Frontiers in Microbiology, 8, 716.

    Article  Google Scholar 

  15. Buchert, J., & Niemelä, K. (1991). Oxidative detoxification of wood-derived inhibitors by Gluconobacter oxydans. Journal of Biotechnology, 18, 1–12. https://doi.org/10.1016/0168-1656(91)90231-J.

    Article  CAS  Google Scholar 

  16. Hou, W., Zhang, M., & Bao, J. (2018). Cascade hydrolysis and fermentation of corn stover for production of high titer gluconic and xylonic acids. Bio/Technology, 264, 395–399.

    CAS  Google Scholar 

  17. Meyer, Y., Reichheld, J. P., & Vignols, F. (2005). Thioredoxins in Arabidopsis and other plants. Photosynthesis Research, 86, 419–433. https://doi.org/10.1007/s11120-005-5220-y.

    Article  CAS  PubMed  Google Scholar 

  18. Laurent, T. C., Moore, E. C., & Reichard, P. (1964). Enzymatic synthesis of deoxyribonucleotides IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. The Journal of Biological Chemistry, 239, 3436–3444.

    CAS  PubMed  Google Scholar 

  19. Gelhaye, E., Rouhier, N., Navrot, N., & Jacquot, J. P. (2005). The plant thioredoxin system. Cellular and Molecular Life Sciences, 62(1), 24–35. https://doi.org/10.1007/s00018-004-4296-4.

    Article  CAS  PubMed  Google Scholar 

  20. Meyer, Y., Vignols, F., & Reichheld, J. P. (2002). Classification of plant thioredoxins by sequence similarity and intron position. Methods in Enzymology, 347, 394–402.

    Article  CAS  Google Scholar 

  21. Miao, Y., Zhou, X., Xu, Y., & Yu, S. (2015). Draft genome sequence of Gluconobacter oxydans NL71, a strain that efficiently biocatalyzes xylose to xylonic acid at a high concentration. Genome Announcements, 3, e00615–e00615.

    Article  Google Scholar 

  22. Holmgren, A. (1979). Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. Journal of Biological Chemistry, 254, 9627–9632.

    CAS  PubMed  Google Scholar 

  23. Wang, Q., Ning, X., Pei, D., Zhao, J., You, L., Wang, C., & Wu, H. (2013). Molecular cloning, characterization and expression profiles of thioredoxin 1 and thioredoxin 2 genes in Mytilus galloprovincialis. Chinese Journal of Oceanology and Limnology, 31(3), 493–503. https://doi.org/10.1007/s00343-013-2234-8.

    Article  CAS  Google Scholar 

  24. Arnér, E. S. J., & Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. Febs Journal, 267(20), 6102.

    Google Scholar 

  25. Hartwig, S., Pinske, C., & Sawers, R. G. (2015). Chromogenic assessment of the three molybdo-selenoprotein formate dehydrogenases in Escherichia coli. Biochemistry & Biophysics Reports, 1(1), 62–67.

    Article  Google Scholar 

  26. Axe, B. (1995). Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnology and Bioengineering, 47(1), 8–19. https://doi.org/10.1002/bit.260470103.

    Article  CAS  PubMed  Google Scholar 

  27. Matsushita, K., Fujii, Y., Ano, Y., et al. (2003). 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Applied and Environmental Microbiology, 69(4), 1959–1966. https://doi.org/10.1128/AEM.69.4.1959-1966.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, S., Guo, C., Lin, W., Wu, F., Lu, G., Lu, J., & Dang, Z. (2017). Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B, Science of the Total Environment., 609, 1161–1171. https://doi.org/10.1016/j.scitotenv.2017.07.245.

Download references

Funding

The research was supported by the National Natural Science Foundation of China (31370573, 31901270). Also, the authors gratefully acknowledge the financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

Relative quantity of 19 DEGs in recombinant strains with 3 inhibitors at 24 h (JPG 1983 kb)

ESM 2

Relative quantity of 19 DEGs in recombinant strains with 3 inhibitors at 48 h (JPG 1950 kb)

ESM 3

Relative quantity of 19 DEGs in recombinant strains with 3 inhibitors at 72 h (JPG 1857 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Zhou, X. & Xu, Y. Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin. Appl Biochem Biotechnol 191, 1072–1083 (2020). https://doi.org/10.1007/s12010-020-03253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03253-6

Keywords

Navigation