Skip to main content
Log in

Low-frequency Ultrasound with Short Application Time Improves Cellulase Activity and Reducing Sugars Release

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we investigated the effect of ultrasound (US) on the activity of commercial cellulase (Celluclast® 1.5 L) in the absence and in the presence of a cellulosic substrate (Avicel®, 2% w.v−1) using a central composite rotatable design. Sonication time (10 to 330 s), US intensity (120.6 to 263.7 W cm−2), and reaction temperature (25 to 50 °C) were varied using a horn-type ultrasound reactor, and endoglucanase (CMCase) and total cellulase (FPase) activities were determined. US intensity had a positive effect on enzyme activity. Under optimal conditions (170 s, 180.8 W cm−2, and 25 °C), CMCase activity was 13% higher than that of the control. In the presence of substrate, CMCase activity increased by 33.87% and KM reduced by 23% in relation to that of the control. The theoretical yield of cellulose was 42.08%. Cellulase activity can be improved by US treatment to maximize productivity gains and reduce costs in second-generation ethanol production, by the action of a low-frequency ultrasound with a short ultrasonication time of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, H., & Fu, X. (2016). Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 57, 468–478. https://doi.org/10.1016/j.rser.2015.12.069.

    Article  CAS  Google Scholar 

  2. Soccol, C. R., Vandenberghe, L. P. de S., Medeiros, A. B. P., Karp, S. G., Buckeridge, M., Ramos, L. P., … Torres, F. A. G. (2010). Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresource Technology, 101(13), 4820–4825. doi:https://doi.org/10.1016/j.biortech.2009.11.067

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Z., Lin, X., Li, P., Zhang, J., Wang, S., & Ma, H. (2012). Effects of low intensity ultrasound on cellulase pretreatment. Bioresource Technology, 117, 222–227. https://doi.org/10.1016/j.biortech.2012.04.015.

    Article  CAS  PubMed  Google Scholar 

  4. Valdivia, M., Galan, J. L., Laffarga, J., & Ramos, J. L. (2016). Biofuels 2020: biorefineries based on lignocellulosic materials. Microbial Biotechnology, 9(5), 585–594. https://doi.org/10.1111/1751-7915.12387.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kuhad, R. C., Deswal, D., Sharma, S., Bhattacharya, A., Jain, K. K., Kaur, A., Pletschke, B. I., Singh, A., & Karp, M. (2016). Revisiting cellulase production and redefining current strategies based on major challenges. Renewable and Sustainable Energy Reviews, 55, 249–272. https://doi.org/10.1016/j.rser.2015.10.132.

    Article  CAS  Google Scholar 

  6. Subhedar, P. B., & Gogate, P. R. (2014). Enhancing the activity of cellulase enzyme using ultrasonic irradiations. Journal of Molecular Catalysis B: Enzymatic, 101, 108–114. https://doi.org/10.1016/j.molcatb.2014.01.002.

    Article  CAS  Google Scholar 

  7. Nguyen, T. T. T., & Le, V. V. M. (2013). Effects of ultrasound on cellulolytic activity of cellulase complex. International Food Research Journal, 20(2), 557–563.

    CAS  Google Scholar 

  8. Leaes, E. X., Lima, D., Miklasevicius, L., Ramon, A. P., Dal Prá, V., Bassaco, M. M., Terra, L. M., & Mazutti, M. A. (2013). Effect of ultrasound-assisted irradiation on the activities of α-amylase and amyloglucosidase. Biocatalysis and Agricultural Biotechnology, 2(1), 21–25. https://doi.org/10.1016/j.bcab.2012.08.003.

    Article  Google Scholar 

  9. Dalagnol, L. M. G., Silveira, V. C. C., da Silva, H. B., Manfroi, V., & Rodrigues, R. C. (2017). Improvement of pectinase, xylanase and cellulase activities by ultrasound: effects on enzymes and substrates, kinetics and thermodynamic parameters. Process Biochemistry, 61(July), 80–87. https://doi.org/10.1016/j.procbio.2017.06.029.

    Article  CAS  Google Scholar 

  10. Benazzi, T., Calgaroto, S., Astolfi, V., Dalla Rosa, C., Oliveira, J. V., & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme and Microbial Technology, 52(4), 247–250. https://doi.org/10.1016/j.enzmictec.2013.02.001.

    Article  CAS  PubMed  Google Scholar 

  11. Sulaiman, A. Z., Ajit, A., Yunus, R. M., & Chisti, Y. (2011). Ultrasound-assisted fermentation enhances bioethanol productivity. Biochemical Engineering Journal, 54(3), 141–150. https://doi.org/10.1016/j.bej.2011.01.006.

    Article  CAS  Google Scholar 

  12. Dai, C., Xiong, F., He, R., Zhang, W., & Ma, H. (2017). Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae. Ultrasonics Sonochemistry, 36, 191–197. https://doi.org/10.1016/j.ultsonch.2016.11.035.

    Article  CAS  PubMed  Google Scholar 

  13. Delgado-Povedano, M. M., & Luque de Castro, M. D. (2015). A review on enzyme and ultrasound: a controversial but fruitful relationship. Analytica Chimica Acta, 889, 1–21. https://doi.org/10.1016/j.aca.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  14. Rico-Rodríguez, F., Serrato, J. C., Montilla, A., & Villamiel, M. (2018). Impact of ultrasound on galactooligosaccharides and gluconic acid production throughout a multienzymatic system. Ultrasonics Sonochemistry, 44, 177–183. https://doi.org/10.1016/J.ULTSONCH.2018.02.022.

    Article  PubMed  Google Scholar 

  15. Avhad, D. N., & Rathod, V. K. (2015). Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor. Ultrasonics Sonochemistry, 22, 257–264. https://doi.org/10.1016/J.ULTSONCH.2014.04.020.

    Article  CAS  PubMed  Google Scholar 

  16. Feng, H., Barbosa-Cánovas, G. V., & Weiss, J. (2011). Ultrasound Technologies for Food and Bioprocessing. Berlin: Springer. https://doi.org/10.1007/978-1-4419-7472-3.

    Book  Google Scholar 

  17. Szabo, O. E., Csiszar, E., Toth, K., Szakacs, G., & Koczka, B. (2015). Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation. Ultrasonics Sonochemistry, 22, 249–256. https://doi.org/10.1016/J.ULTSONCH.2014.07.001.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tang, Y., Xiong, F., He, R., & Ma, H. (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonochemistry, 37, 144–149. https://doi.org/10.1016/j.ultsonch.2016.12.018.

    Article  CAS  PubMed  Google Scholar 

  19. Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417. https://doi.org/10.1016/J.ULTSONCH.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  20. Chemat, F., Zill-E-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023.

    Article  CAS  PubMed  Google Scholar 

  21. Rokhina, E. V., Lens, P., & Virkutyte, J. (2009). Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, 27(5), 298–306. https://doi.org/10.1016/j.tibtech.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  22. Szabó, O. E., & Csiszár, E. (2013). The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme. Carbohydrate Polymers, 98(2), 1483–1489. https://doi.org/10.1016/j.carbpol.2013.08.017.

    Article  CAS  PubMed  Google Scholar 

  23. Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60–72. https://doi.org/10.1016/j.bej.2008.10.006.

    Article  CAS  Google Scholar 

  24. Szabo, O. E., & Csiszar, E. (2017). Some factors affecting efficiency of the ultrasound-aided enzymatic hydrolysis of cotton cellulose. Carbohydrate Polymers, 156, 357–363. https://doi.org/10.1016/j.carbpol.2016.09.039.

    Article  CAS  PubMed  Google Scholar 

  25. Islam, M. N., Zhang, M., & Adhikari, B. (2014). The inactivation of enzymes by ultrasound-a review of potential mechanisms. Food Reviews International, 30(1), 1–21. https://doi.org/10.1080/87559129.2013.853772.

    Article  CAS  Google Scholar 

  26. Rodrigues, M. I., & Iemma, A. F. (2014). Design of Experiments and Process Optimization (1st ed.). Campinas: CRC Press.

    Book  Google Scholar 

  27. Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., et al. (2011). Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. Renewable Energy, 303(May), 147. https://doi.org/10.2172/1013269.

    Article  Google Scholar 

  28. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268. https://doi.org/10.1351/pac198759020257.

    Article  CAS  Google Scholar 

  29. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  30. Qiu, Z., Aita, G. M., & Walker, M. S. (2012). Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresource Technology, 117, 251–256. https://doi.org/10.1016/j.biortech.2012.04.070.

    Article  CAS  PubMed  Google Scholar 

  31. Nadar, S. S., & Rathod, V. K. (2017). Sonochemical effect on activity and conformation of commercial lipases. Applied Biochemistry and Biotechnology, 181(4), 1435–1453. https://doi.org/10.1007/s12010-016-2294-2.

    Article  CAS  PubMed  Google Scholar 

  32. Ma, H., Huang, L., Jia, J., He, R., Luo, L., & Zhu, W. (2011). Effect of energy-gathered ultrasound on Alcalase. Ultrasonics Sonochemistry, 18(1), 419–424. https://doi.org/10.1016/J.ULTSONCH.2010.07.014.

    Article  CAS  PubMed  Google Scholar 

  33. Guiseppi-Elie, A., Choi, S.-H., & Geckeler, K. E. (2009). Ultrasonic processing of enzymes: effect on enzymatic activity of glucose oxidase. Journal of Molecular Catalysis B: Enzymatic, 58(1), 118–123. https://doi.org/10.1016/j.molcatb.2008.12.005.

    Article  CAS  Google Scholar 

  34. Singh, S., Bharadwaja, S. T. P., Yadav, P. K., Moholkar, V. S., & Goyal, A. (2014). Mechanistic investigation in ultrasound-assisted (alkaline) delignification of parthenium hysterophorus biomass. Industrial and Engineering Chemistry Research, 53(37), 14241–14252. https://doi.org/10.1021/ie502339q.

    Article  CAS  Google Scholar 

  35. Oliveira, H. M., Correia, V. S., Segundo, M. A., Fonseca, A. J. M., & Cabrita, A. R. J. (2017). Does ultrasound improve the activity of alpha amylase? A comparative study towards a tailor-made enzymatic hydrolysis of starch. LWT - Food Science and Technology, 84, 674–685. https://doi.org/10.1016/j.lwt.2017.06.035.

    Article  CAS  Google Scholar 

  36. Yu, Z. L., Zeng, W. C., Zhang, W. H., Liao, X. P., & Shi, B. (2014). Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin. Ultrasonics Sonochemistry, 21(3), 930–936. https://doi.org/10.1016/j.ultsonch.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  37. Aliyu, M., & Hepher, M. J. (2000). Effects of ultrasound energy on degradation of cellulose material. Ultrasonics Sonochemistry, 7(4), 265–268. https://doi.org/10.1016/S1350-4177(00)00052-3.

    Article  CAS  PubMed  Google Scholar 

  38. Yachmenev, V. G., Bertoniere, N. R., & Blanchard, E. J. (2002). Intensification of the bio-processing of cotton textiles by combined enzyme/ultrasound treatment. Journal of Chemical Technology and Biotechnology, 77(5), 559–567. https://doi.org/10.1002/jctb.579.

    Article  CAS  Google Scholar 

  39. Sulaiman, A. Z., & Ajit, A. (2013). Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. https://doi.org/10.1002/btpr.1786.

Download references

Funding

This study was supported by CNPq (grant no. 444422/2014-5), FAPESP (grant nos. 04602-3/2016 and 11932-7/2015), and CAPES (finance code 001). We also thank CAPES for the scholarship provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Goldbeck.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Silvello, M.A., Martínez, J. & Goldbeck, R. Low-frequency Ultrasound with Short Application Time Improves Cellulase Activity and Reducing Sugars Release. Appl Biochem Biotechnol 191, 1042–1055 (2020). https://doi.org/10.1007/s12010-019-03148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03148-1

Keywords

Navigation