Skip to main content
Log in

Enzyme-induced Fenton reaction coupling oxidation of o-phenylenediamine for sensitive and specific immunoassay

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a simple and feasible immunoassay protocol with signal amplification for sensitive determination of alpha fetoprotein (AFP, used as a model) by using new enzyme-induced Fenton reaction (EIFR) accompanying the oxidation of o-phenylenediamine (OPD) system. We discovered that glucose oxidase (GOx) has the ability to stimulate in situ Fenton reaction coupling the oxidation of OPD. GOx-catalyze of glucose results in the formation of hydrogen peroxide (H2O2). It can catalytically oxidize Fe2+to Fe3+, meanwhile producing hydroxyl radicals (•OH). The latter effectively initiated the catalytic oxidation of o-phenylenediamine (OPD) to 2,2-aminoazobenzene (DAP), resulting in the production of an electrochemical signal. On the basis of EIFR-OPD system, a new immunoassay protocol with GOx/anti-pAb2-conjugated gold nanoparticle (Ab2-AuNP-GOx) detection antibody can be designed for the detection of target AFP on capture antibody–functionalized transparent 96-well polystyrene microplate, monitored by recording the current peak of the generated DAP. The electrochemical current shows to be positively correlated with the concentration of target AFP. Under optimal conditions, the proposed assay exhibited good electrochemical responses for detecting target AFP in the range of 1.0 pg mL1 to 100 ng mL−1 with a detection limit (LOD) of 0.5 pg mL−1 (0.5 ppt) estimated at the 3Sblank level. Additionally, the precision, reproducibility, specificity, and method accuracy were also investigated with acceptable results. Importantly, the EIFR-OPD system can be further extended for the determination of other protein or biomarkers by controlling the specific recognition system (antibody or aptamer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yi H, Heng Z (2017) Protein array-based approaches for biomarker discovery in cancer. Genom Proteom Bioinf 15:73–81

    Article  Google Scholar 

  2. Xue J, Yang L, Wang H, Yan T, Fan D, Feng R, Du B, Wei Q, Ju H (2019) Quench-type electrochemiluminescence immunosensor for detection of amyloid β-protein based on resonance energy transfer from luminol@SnS2-Pd to Cu doped WO3 nanoparticles. Biosens Bioelectron 133:192–198

    Article  CAS  Google Scholar 

  3. Zhang J, Jin R, Jiang D, Chen H (2019) Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J Am Chem Soc 141(26):10294–10299

    Article  CAS  Google Scholar 

  4. Fernandes E, Cabral P, Campos R, Machado G, CerqueiraM SC, Freitas P, Borme J, Petrovykh D, Alpuim P (2019) Functionalization of single-layer graphene for immunoassay. Appl Surf Sci 480:709–716

    Article  CAS  Google Scholar 

  5. Kwak J, Lee S (2019) Highly sensitive piezoelectric immunosensors employing signal amplification with gold nanoparticles. Nanotechnology. https://doi.org/10.1088/1361-6528/ab36c9

    Article  CAS  Google Scholar 

  6. Lin Y, Zhou Q, Lin Y, Tang D, Chen G, Tang D (2015) Simple and sensitive detection of aflatoxin B1 within five minute using a non-conventional competitive immunosensing mode. Biosens Bioelectron 74:680–686

    Article  CAS  Google Scholar 

  7. Zhou J, Tang J, Chen G, Tang D (2014) Layer-by-layer multienzyme assembly for highly sensitive electrochemical immunoassay based on tyramine signal amplification strategy. Biosens Bioelectron 54:323–328

    Article  CAS  Google Scholar 

  8. Wei T, Ren P, Huang L, Ouyang Z, Wang Z, Kong X, Li T, Yin Y, Wu Y, He Q (2019) Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deosynivalenol in corn and wheat using surface plasmon resonance. Food Chem 300:125176–125182

    Article  CAS  Google Scholar 

  9. Takemura K, Lee J, Suzuki T, Hara T, Abe F, Park E (2019) Ultrasensitive detection of norovirus using a magnetofluoroimmunoassay based on synergic properties of gold/magnetic nanoparticle hybrid nanocomposites and quantum dots. Sensor Actuat B-Chem 296:126672–126679

    Article  CAS  Google Scholar 

  10. Wang Y, Li D, Ren W, Liu Z, Dong S, Wang E (2008) Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chem Commun 2008:2520–2522

    Article  Google Scholar 

  11. Zhang Y, Tan W, Zhang L, Shi S, Niu Y, Yang X, Qiao J, Wang H (2019) Highly sensitive and selective colorimetric determination of staphylococcus aureus via chicken anti-protein A lgY antibody. Anal Methods 11:3665–3670

    Article  CAS  Google Scholar 

  12. Lin Z, Lv S, Zhang K, Tang D (2017) Optical transformation of a CdTe quantum dot-based paper sensor for a visual fluorescence immunoassay induced by dissolved silver ions. J Nater Chem B 5:826–833

    Article  CAS  Google Scholar 

  13. Chen Y, He Q, Shen D, Jiang Z, Eremin S, Zhao S (2019) Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the diisobutyl phthalate in yoghurt. Food Control 105:38–44

    Article  CAS  Google Scholar 

  14. Liu B, Zhang B, Chen G, Tang D (2014) An omega-like DNA nanostructure utilized for small molecule introduction to stimulate formation of DNAzyme-aptamer conjugates. Chem Commun 50:1900–1902

    Article  CAS  Google Scholar 

  15. Zeng K, Wei D, Zhang Z, Meng H, Huang Z, Zhang X (2019) Enhanced competitive immunomagnetic beads assay with gold nanoparticles and carbon nanotube-assisted multiple enzyme probes. Sensor Actuat B-Chem 292:196–202

    Article  CAS  Google Scholar 

  16. Xiang H, Wang Y, Wang M, Shao Y, Jiao Y, Zhu Y (2018) A redoc cycling-amplified electrochemical immunosensor for α-fetoprotein sensitive detection via polydopamine nanolabels. Nanoscale 10:13572–13580

    Article  CAS  Google Scholar 

  17. Wang X, Hu X, Xiao F, Dai J, Zeng X, Ye L, Liu B (2019) A convenient signal amplification strategy for the carcinoembryonic antigen determination based on the self-polymerization of dopamine. J Solid State Electrochem 23:2447–2453

    Article  CAS  Google Scholar 

  18. Huang L, Zhang L, Yang L, Yuan R, Yuan Y (2018) Manganese porphyrin decorated on DNA networks as quencher and mimicking enzyme for construction of ultrasensitive photoelectrochemistry aptasensor. Biosens Bioelectron 104:21–26

    Article  CAS  Google Scholar 

  19. Zhao Z, Pang J, Liu W, Lin T, Ye F, Zhao S (2019) A bifunctional metal organic framework of type Fe (III)-BTC for cascade (enzymatic and enzyme-mimicking) colorimetric determination of glucose. Microchim Acta 186:295–302

    Article  Google Scholar 

  20. Xu L, Liu Z, Lei S, Huang D, Zou L, Ye B (2019) A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites. Microchim Acta 186:473–481

    Article  Google Scholar 

  21. Yang Z, Zhuo Y, Yuan R, Chai Y (2015) An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens Bioelectron 69:321–327

    Article  CAS  Google Scholar 

  22. Zhang H, Choi H, Huang C (2005) Optimization of Fenton process for the treatment of landfill leachate. J Hazard Mater 125:166–174

    Article  CAS  Google Scholar 

  23. Boulange M, Lorgeoux C, Biache C, Saada A (2019) Fenton-like and potassium permanganate oxidations of PAH-contaminated soil: impact of oxidant doses on PAH and polar PAC (polycylic aromatic compound) behavior. Chemosphere 224:437–444

    Article  CAS  Google Scholar 

  24. Su C, Lu Y, Deng Q, Chen S, Pang G, Chen W, Chen M, Huang Z (2019) Performance of a novel ABR-bioelectricity-Fenton coupling reactor for treating traditional Chinese medicine wastewater containing catechol. Ecotox Environ Safe 177:39–46

    Article  CAS  Google Scholar 

  25. Lacasa E, Canizares P, Walsh F, Rodrigo M, Ponce-de-Leon C (2019) Removal of methylene blue from aqueous solutions using an Fe2+ catalyst and in-situ H2O2 generated at gas diffusion cathodes. Electrochim Acta 308:45–53

    Article  CAS  Google Scholar 

  26. Zou J, Cai H, Wang D, Xiao J, Zhou Z, Yuan B (2019) Spectrophotometric determination of trace hydrogen peroxide via the oxidative coloration of DPD using a Fenton system. Chemosphere 224:646–652

    Article  CAS  Google Scholar 

  27. Lai W, Wei Q, Xu M, Zhuang J, Tang D (2017) Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens Bioelectron 89(Pt 1):645–651

    Article  CAS  Google Scholar 

  28. Huang Y, Lin T, Hou L, Ye F, Zhao S (2019) Colorimetric detection of thioglycolic acid based on the enhanced Fe3+ ions Fenton reaction. Microchem J 144:190–194

    Article  CAS  Google Scholar 

  29. An Y, Jin T, Zhu Y, Zhang F, He P (2019) An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry. Biosens Bioelectron 142:111503–111509

    Article  CAS  Google Scholar 

  30. Wang X, Zhu G, Cao W, Liu Z, Pan C, Hu W, Zhao W, Sun J (2019) A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta 191:46–53

    Article  CAS  Google Scholar 

  31. Zhao C, Jiang Z, Mu R, Li Y (2016) A novel sensor for dopamine based on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks-hydrogen peroxide-o-phenylenediamine system. Talanta 159:365–370

    Article  CAS  Google Scholar 

  32. Purvis D, Leonardova O, Farmakovsky D, Cherkasov V (2003) An ultrasensitive and stable potentiometric immunosensor. Biosens Bioelectron 18:1385–1390

    Article  CAS  Google Scholar 

  33. Zhang Q, Prabhu A, San A, Al-Sharab J, Levon K (2015) A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection. Biosens Bioelectron 72:100–106

    Article  CAS  Google Scholar 

  34. Jacobson H, Bersen T, Bennett J (2014) Development of an active site peptide analog of alpha-fetoprotein that prevents breast cancer. Cancer Prev Res 7(6):565–573

    Article  CAS  Google Scholar 

  35. Ge L, Li B, Xu H, Pu W, Kwok H (2019) Backfilling rolling cycle amplification with enzyme-DNA conjugates on antibody for portable electrochemical immunoassay with glucometer readout. Biosens Bioelectron 132:210–216

    Article  CAS  Google Scholar 

  36. Gao Z, Xu M, Hou L, Chen C, Tang D (2013) Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal Chem 85(14):6945–6952

    Article  CAS  Google Scholar 

  37. Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84(12):5392–5399

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21605029, 21864007) and Science and Technology Foundation of Guizhou Province ([2017]5788 Qian Ke He Platform for Talents, [2018]5781 Qian Ke He Platform for Talents, [2016]1032 Qian Ke He Ji Chu)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqian Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Shi, W., Yang, Y. et al. Enzyme-induced Fenton reaction coupling oxidation of o-phenylenediamine for sensitive and specific immunoassay. J Solid State Electrochem 24, 633–640 (2020). https://doi.org/10.1007/s10008-020-04499-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04499-0

Keywords

Navigation