Skip to main content
Log in

Synthesis and dielectric spectroscopic study of lead-free ferroelectric ceramic K0.5Bi0.5TiO3-NaNbO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the synthesis and promising electrical properties of a new lead-free ferroelectric ceramic K0.5Bi0.5TiO3-NaNbO3 (KBT-NN), which can be a candidate of choice for future sensors, FeRAM etc. Mixed-oxide method has been employed to prepare the compound comprising of uniformly distributed grains. Detailed structural analysis revealed its orthorhombic structure with space group Pmc21. In-depth analysis of the electrical characterization data revealed a band-gap of 3.11 eV and presence of defects in the bands. Further, ferroelectric phase transition is observed to occur at 395 °C. The dielectric properties of the material, investigated over a wide range of frequencies and temperatures, indicate that its ac conductivity depends upon frequency according to Jonscher’s power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    CAS  Google Scholar 

  2. M.E. Lines, A.M. Glass, Principle and Application of Ferroelectrics and Related Materials (Clarndon Press, Oxford, 1977)

    Google Scholar 

  3. R. Selvamani, G. Singh, V. Sathe, V.S. Tiwari, P.K. Gupta, Dielectric, structural and Raman studies on (Na0.5Bi0.5TiO3)(1−x)(BiCrO3)x ceramic. J. Phys. 23, 8 (2011)

    Google Scholar 

  4. A.I. Kingon, P.J. Terblanché, J.B. Clark, The control of composition, microstructure and properties of Pb(Zr, Ti)O3 ceramics. Mater. Sci. Eng. B 71, 391–397 (1985)

    CAS  Google Scholar 

  5. V.V. Shvartsman, J. Dec, T. Lukasiewicz, A.L. Khalkin, W.K. Leemann, Evolution of the polar structure in relaxor ferroelectrics close to the curie temperature studied by piezoresponse force microscopy. Ferroelectrics 373, 77–85 (2008)

    CAS  Google Scholar 

  6. S. Zhao, Q. Li, Y. Feng, C. Nan, Microstructure and dielectric properties of PMN–PT ceramics prepared by the molten salts method. J. Phys. Chem. Solids 70, 639–644 (2009)

    CAS  Google Scholar 

  7. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of Ba(Ti1−xZrx)O3 ceramics. J. Appl. Phys. 92, 1489–1493 (2002)

    CAS  Google Scholar 

  8. C. Karthik, N. Ravishankar, K.B.R. Varma, M. Maglione, R. Vondermuhll, J. Etourneau, Relaxor behaviour of K0.5La0.5Bi2Nb2O9 ceramic. Appl. Phys. Lett. 89, 042905–042913 (2006)

    Google Scholar 

  9. R. Zuo, D. Lv, J. Fu, Y. Liu, L. Li, Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3–BiAlO3 ceramics. J. Alloys Compd. 476, 836–839 (2009)

    CAS  Google Scholar 

  10. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamur, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    CAS  Google Scholar 

  11. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)

    Google Scholar 

  12. S. Lanfredi, M.H. Lente, J.A. Eiras, Phase transition at low temperature in NaNbO3 ceramic. Appl. Phys. Lett. 80, 2731–2733 (2002)

    CAS  Google Scholar 

  13. S. Tripathi, D. Pandey, S.K. Mishra, P.S.R. Krishna, Morphotropic phase-boundary-like characteristic in a lead-free and non-ferroelectric (1–x)NaNbO3−xCaTiO3 system. Phys. Rev. B 77, 052104–52114 (2008)

    Google Scholar 

  14. J.T. Zeng, K.W. Kwok, H.L.W. Chan, Ferroelectric and Piezoelectric Properties of Na1−xBaxNb1−xTixO3 Ceramics. J. Am. Ceram. Soc. 89, 2828–2832 (2006)

    CAS  Google Scholar 

  15. M.T. Benlahrache, N. Benhamla, S. Achour, Dielectric properties of BaTiO3–NaNbO3 composites. J. Euro. Ceram. Soc. 24, 1493–1496 (2004)

    CAS  Google Scholar 

  16. H. Wu, A. Navrotsky, Y. Su, M.L. Balmer, Perovskite solid solutions along the NaNbO3−SrTiO3 join: phase transitions, formation enthalpies, and implications for general perovskite energetics. Chem. Mater. 17, 1880–1886 (2005)

    Google Scholar 

  17. A. Aydi, H. Khemakhem, C. Boudaya, R.V. Mühll, New ferroelectric and relaxor ceramics in the mixed oxide system NaNbO3–BaSnO3. Solid State Sci. 6, 333–337 (2004)

    CAS  Google Scholar 

  18. C. Chaker, W.E. Gharbi, N. Abdelmoula, H. Khemakhem, A. Simon, M. Maglione, Physical properties of the new ceramics in the mixed oxide system Na1−xLixNb1−xSbxO3. J. Alloys Compd. 481, 305–309 (2009)

    CAS  Google Scholar 

  19. G. Wang, Z. Lu, Z. Zhang, A. Feteira, C.C. Tang, D.A. Hall, Electric field‐induced irreversible relaxor to ferroelectric phase transformations in Na0.5Bi0.5TiO3‐NaNbO3 ceramics. J. Am. Ceram. Soc. 102, 7746–7754 (2019)

    CAS  Google Scholar 

  20. G. Wang, D.A. Hall, T.P. Comyn, L. Daniel, A.K. Kleppe, Structure and ferroelectric behaviour of Na0.5Bi0.5TiO3-KNbO3 ceramics. Adv. Appl. Ceram. Struct. Funct. Bioceram. 115, 89–95 (2016)

    CAS  Google Scholar 

  21. J. Ye, G. Wang, M. Zhou, N. Liu, X. Chen, S. Li, F. Cao, X. Dong, Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 7, 5639–5645 (2019)

    CAS  Google Scholar 

  22. Q. Xu, T. Li, H. Hao, S. Zhang, Z. Wang, M. Cao, Z. Yao, H. Liu, Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 35, 545–553 (2015)

    CAS  Google Scholar 

  23. D. Lin, K.W. Kwok, J. Mater. Sci. 21, 1060 (2010)

    CAS  Google Scholar 

  24. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Chapter-4) (Wiley, New York, 1987)

    Google Scholar 

  25. A.P. Barranco, M.P.G. Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 20 (1998)

    Google Scholar 

  26. J.R. Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192, 55–69 (1993)

    Google Scholar 

  27. H.P. Klug, L.B. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974)

    Google Scholar 

  28. M.F. Mostafa, S.S. Ata-Allah, A.A.A. Youssef, H.S. Refai, Electric and AC magnetic investigation of the manganites La0.7Ca0.3Mn0.96In0.04xAl(1−x)0.04O3; (0.0 ≤ x ≤ 1.0). J. Magn. Magn. Mater. 320, 344–353 (2008)

    CAS  Google Scholar 

  29. S. Coste, A. Lecomte, P. Thomas, T. Merle-Mejean, J.C. Champarnaud-Mesjard, Sol-gel synthesis of TeO2-based materials using citric acid as hydrolysis modifier. J. Sol-Gel Sci. Technol. 41, 79–86 (2007)

    CAS  Google Scholar 

  30. E.A. Perianu, I.A. Gorodea, F. Gheorghiu, A.V. Sandu, A.C. Ianculescu, I. Sandu, A.R. Iordan, M.N. Palamaru, Rev Chim (Bucharest) 62, 17–20 (2011)

    CAS  Google Scholar 

  31. R.L. Frost, J. Yang, Z. Ding, Raman and FTIR spectroscopy of natural oxalates: Implications for the evidence of life on Mars. Chin. Sci. Bull. 48, 1844–1852 (2003)

    CAS  Google Scholar 

  32. M. Zheng-Zheng, L. Jian-Qing, T.Z. Ming, Q. Yang, Y. Song-Liu, Improved multiferroic properties of La-doped 0.6BiFeO3–0.4SrTiO3 solid solution ceramic. Chin. Phys. B 21, 107503–107506 (2012)

    Google Scholar 

  33. https://www.sigmaplot.co.uk/products/peakfit/peakfit.php

  34. L. Chen, K.J. Chen, S. Hu, R.S. Liu, Combinatorial chemistry approach to searching phosphors for white light-emitting diodes in (Gd-Y-Bi-Eu)VO4 quaternary system. J. Mater. Chem. 21, 3677–3685 (2011)

    CAS  Google Scholar 

  35. B. Liu, X. Wang, G. Cai, L. Wen, Y. Song, X. Zhao, Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. J. Hazard. Mater. 169, 1112–1118 (2009)

    CAS  Google Scholar 

  36. Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang, H. Yan, Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique. J. Cryst. Growth 273, 500–503 (2005)

    CAS  Google Scholar 

  37. H. Idink, V. Srikanth, W.B. White, E.C. Subbarao, Raman study of low temperature phase transitions in bismuth titanate, Bi4Ti3O12. J. Appl. Phys. 76, 1819–1823 (1994)

    CAS  Google Scholar 

  38. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  39. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, Diffuseness as a useful parameter for relaxor ceramics. J. Am. Ceram. Soc. 73, 3122–3125 (1990)

    CAS  Google Scholar 

  40. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)

    CAS  Google Scholar 

  41. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems, Chapter-4 (Wiley, New York, 1987)

    Google Scholar 

  42. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, Electrical relaxation in Na2O.3SiO2 glass. J. Am. Ceram. Soc. 55, 492–496 (1972)

    CAS  Google Scholar 

  43. T. Sahu, A.K. Patra, B. Behera, Effect of Gadolinium doping on structural, ferroic and electrical properties of 0.8BiGdxFe1-xO3–0.2PbTiO3 (x = 0.00, 0.05, 0.10, 0.15 and 0.20) composites. J. Alloys Compd. 695, 2273–2284 (2017)

    CAS  Google Scholar 

  44. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  45. I.M. Hodge, M.D. Ingram, A.R. West, A new method for analyzing the a.c. behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. 58, 429–432 (1975)

    CAS  Google Scholar 

  46. J.R. Macdonald, Note on parameterization of the constant-phase admittance element. Solid State Ionics 13, 147–149 (1984)

    CAS  Google Scholar 

  47. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024102–024110 (2009)

    Google Scholar 

  48. H. Jain, C.H. Hsieh, ‘Window’ effect in the analysis of frequency dependence of ionic conductivity. J. Non-Cryst. Solids 172, 1408–1412 (1994)

    Google Scholar 

  49. D.K. Pradhan, B. Behera, P.R. Das, Studies of dielectric and electrical properties of a new type of complex tungsten bronze electro ceramics. J. Mater. Sci. 23, 779–785 (2012)

    CAS  Google Scholar 

  50. Z. Lu, J.P. Bonnet, J. Ravez, J.P. Hagenmuller, Correlation between low frequency dielectric dispersion (LFDD) and impedance relaxation in ferroelectric ceramic Pb2KNb4TaO15. Solid State Ionics 57, 235–244 (1992)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors H.S.M. acknowledges the financial support from CSIR, India for the SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush R. Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S.K., Datta, D.P., Behera, B. et al. Synthesis and dielectric spectroscopic study of lead-free ferroelectric ceramic K0.5Bi0.5TiO3-NaNbO3. J Mater Sci: Mater Electron 31, 3245–3255 (2020). https://doi.org/10.1007/s10854-020-02873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02873-2

Navigation