Skip to main content
Log in

Structure and microwave dielectric properties of BaAl2−2x(CuSi)xSi2O8 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The sintering behavior, phase composition, microstructure and dielectric properties of BaAl2−2x(CuSi)xSi2O8 (x = 0, 0.01, 0.015, 0.02, 0.04, 0.06, 0.08) ceramics prepared via solid-state reaction route were investigated. Deviation between theoretical and experimental permittivity of BaAl2Si2O8 ceramics was discussed, and the theoretical and experimental temperature coefficient of resonant frequency (τf) was also compared. The results showed that substituting (Cu0.5Si0.5)3+ for Al3+ in matrix of hexacelsian could lower the sintering temperature from 1400 to 1200 °C and greatly promote the transformation of hexacelsian-to-celsian. And the single celsian phase was obtained for the compositions with x ≥ 0.02. The bulk densities, microstructure and dielectric properties of BaAl2−2x(CuSi)xSi2O8 ceramics were improved by doping a small quantity of (Cu0.5Si0.5)3+ ions in the BaAl2Si2O8. The BaAl1.96(CuSi)0.02Si2O8 ceramics sintered at 1300 °C obtained good microwave dielectric properties: εr = 6.7, Q × f = 31,276 GHz, τf = − 17.17 × 10−6 °C−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Xi, G.H. Chen, F. Liu et al., Ceram. Int. 45, 3582–3590 (2019)

    Article  Google Scholar 

  2. C.C. Xia, D.H. Jiang, G.H. Chen et al., J. Mater. Sci. 28(16), 12026–12031 (2017). https://doi.org/10.1007/s10854-017-7013-4

    Article  CAS  Google Scholar 

  3. D.H. Jiang, J.J. Chen, B.B. Lu et al., Ceram. Int. 45, 5858–5865 (2019)

    Article  Google Scholar 

  4. A. Mohanram, G.L. Messing, D.J. Green, J. Am. Ceram. Soc. 88, 2681–2689 (2005)

    Article  CAS  Google Scholar 

  5. X.Q. Song, K. Du, Z.Y. Zou et al., Ceram. Int. 43, 14453–14456 (2017)

    Article  CAS  Google Scholar 

  6. L.C. Han, S.H. Ding, T.X. Song et al., J. Inorg. Mater. 33, 13–17 (2018)

    Google Scholar 

  7. Y. Zhang, S.H. Ding, Y.Q. Liu et al., J. Inorg. Mater. 32, 91–95 (2017)

    Article  Google Scholar 

  8. G.K. Savchuk, T.P. Petrochenko, A.A. Klimza, Inorg. Mater. 49, 632–637 (2013)

    Article  CAS  Google Scholar 

  9. D. Bahat, J. Mater. Sci. 4, 855–860 (1969)

    Article  CAS  Google Scholar 

  10. G.A. Khater, M.H. Idris, Ceram. Int. 32, 833–838 (2006)

    Article  CAS  Google Scholar 

  11. Z. Tong, H. Ji, X. Li et al., Ceram. Int. 5, 3145–3156 (2019)

    Google Scholar 

  12. B. Yoshiki, K. Matsumoto, J. Am. Ceram. Soc. 34, 283–286 (1951)

    Article  CAS  Google Scholar 

  13. X.Q. Song, W.Z. Lu, X.C. Wang et al., J. Eur. Ceram. Soc. 38, 1529–1534 (2018)

    Article  CAS  Google Scholar 

  14. P. He, S. Fu, J. Yuan et al., J. Eur. Ceram. Soc. 37, 1969 (2017)

    Article  Google Scholar 

  15. C. Ferone, S. Esposito, G. Dell’Agli et al., Solid State Sci. 7, 1406–1414 (2005)

    Article  CAS  Google Scholar 

  16. R.A. McCauley, J. Mater. Sci. 35, 6251–6258 (2000)

    Article  Google Scholar 

  17. X.J. Yang, Y. Zhang, S.H. Ding et al., Ceram. Int. 44, 4852–4856 (2018)

    Google Scholar 

  18. H. Matsui, C.N. Xu, H. Tateyama, Appl. Phys. Lett. 78, 1068 (2001)

    Article  CAS  Google Scholar 

  19. S. Shikao, W. Jiye, J. Alloys Compd. 327, 82 (2001)

    Article  Google Scholar 

  20. G. Li, M. Li, L. Li et al., Mater. Lett. 65, 1154–1156 (2011)

    Article  Google Scholar 

  21. H. Wu, Y. Hu, G. Ju et al., J. Lumin. 131, 2072–2077 (2011)

    Article  Google Scholar 

  22. I.D. Brown, R.D. Shannon, Acta Crystallogr. Sect. A. 29, 266–282 (1973)

    Article  CAS  Google Scholar 

  23. R. Grabovickic, I.E.E.E. Trans, Appl. Supercond. 9, 2452 (1999)

    Article  Google Scholar 

  24. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969)

    Article  CAS  Google Scholar 

  25. K.T. Lee, P.B. Aswath, Mater. Sci. Eng., A 352, 1–7 (2003)

    Article  Google Scholar 

  26. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  CAS  Google Scholar 

  27. Y. Takeuchi, Mineral. J. 2, 245 (1958)

    Article  CAS  Google Scholar 

  28. A. Manan, I. Qazi, in International Conference on Aerospace Science & Engineering (ICASE). IEEE. (2014) https://doi.org/10.1109/ICASE.2013.6785564

  29. J. Iqbal, H. Liu, H. Hao et al., J. Electron. Mater. 9, 32936 (2018)

    Google Scholar 

  30. S. Zhang, H. Su, H. Zhang et al., Ceram. Int. 42, 621 (2016)

    Article  Google Scholar 

  31. X.K. Yan, S.H. Ding, X.Y. Zhang et al., Chin. J. Inorg. Chem. 47, 12273–12283 (2019)

    Google Scholar 

  32. M.Z. Sun, Fundamentals of Dielectric Physics, 1st edn. (South China University of Technology Press, China, 2002), pp. 42–48

    Google Scholar 

  33. N.P. Bansal, in Handbook of Ceramic Composites||SiC Fiber-Reinforced Celsian Composites (2005), https://doi.org/10.1007/b104068 (Chapter 10), pp. 227–249

    Google Scholar 

  34. M. Ma, D. Zhu, C. Zhao et al., Opt. Commun. 285, 4227–4234 (2012)

    Article  Google Scholar 

  35. M.J. Hyatt, N.P. Bansal, J. Mater. Sci. 31, 172 (1996)

    Article  CAS  Google Scholar 

  36. Y. Zhou, Ceramic Materials Science, 2nd edn. (Science Press, Beijing, 2004), pp. 35–39

    Google Scholar 

  37. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Chun Hui Project of the Ministry of Education of the People’s Republic of China (No. Z2011077), National Natural Science Foundation of China (No. 11074203) and Graduate Innovation Foundation of Xihua University (No. ycjj2019031), the Sichuan Science and Technology Program (2019YFG0234), and National Natural Science Foundation of China (51902268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Ding, S., Zhang, Y. et al. Structure and microwave dielectric properties of BaAl2−2x(CuSi)xSi2O8 ceramics. J Mater Sci: Mater Electron 31, 2591–2597 (2020). https://doi.org/10.1007/s10854-019-02798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02798-5

Navigation