Skip to main content
Log in

Effect of Sb doping on structural and photoelectric properties of SnO2 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sb-doped SnO2 (ATO) thin films were synthesized via the sol–gel dip-coating method on glass substrates. The XPS and XRD spectra showed that Sb atoms were successfully incorporated into the SnO2 lattice and mostly existed in the form of Sb5+ (~ 90%) in 1 at.% ATO thin films annealed in air and further annealed in vacuum. The transmittance spectra revealed that the average transmittance was more than 75% at the wavelength range of 325–700 nm. The average sheet resistancewas 14.05 kΩ/□ in 1 at.% ATO thin films annealing in air and much less than undoped SnO2. The electric property was better when ATO thin films were further annealing vacuum compared to annealing in air. The average sheet resistance and resistivity of 1 at.% ATO thin films were 2.42 kΩ/□ and 0.035 Ω cm, respectively. The PL showed that electrons transition from a shallow level of VO to the minimum level of conduction band (CBM) increased with increasing of Sb3+ ions. The maximum level of valence band (VBM) and CBM level positions were mainly affected by Sb3+ and Sb5+ energy levels after air annealing, respectively. The behavior of surface carrier transport was investigated after further vacuum annealing. The CBM–VBM level position mainly was affected by VO energy level after further vacuum annealing. It was further proved by the Hall carrier concentration and the electrochemical impedance spectroscopy (EIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.O. Scanlon, G.W. Watson, On the possibility of p-type SnO2. J. Mater. Chem. 22(48), 25236–25245 (2012). https://doi.org/10.1039/c2jm34352e

    Article  CAS  Google Scholar 

  2. S. Gürakar, T. Serin, Comprehensive structural analysis and electrical properties of (Cu, Al and In)-doped SnO2 thin films. Mater. Sci. Eng. B (2019). https://doi.org/10.1016/j.mseb.2019.114445

    Article  Google Scholar 

  3. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 1–7. https://doi.org/10.1038/nenergy.2016.177

    Article  CAS  Google Scholar 

  4. A.S. Hassanien, I. Sharma, Optical properties of quaternary a-Ge15-xSbxSe50Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters. Optik 200, 163415 (2019). https://doi.org/10.1016/j.ijleo.2019.163415

    Article  CAS  Google Scholar 

  5. H.Y. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, H. Morkoc, Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct 48(5), 458–484 (2010). https://doi.org/10.1016/j.spmi.2010.08.011

    Article  CAS  Google Scholar 

  6. Y.W. Huang, G.F. Li, J.H. Feng, Q. Zhang, Investigation on structural, electrical and optical properties of tungsten-doped tin oxide thin films. Thin Solid Films 518(8), 1892–1896 (2010). https://doi.org/10.1016/j.tsf.2009.07.119

    Article  CAS  Google Scholar 

  7. S.P. Huang, Z.S. Wang, J. Xu, D.X. Lu, T.S. Yuan, Determination of optical constants of functional layer of online Low-E glass based on the Drude theory. Thin Solid Films 516(10), 3179–3183 (2008). https://doi.org/10.1016/j.tsf.2007.08.137

    Article  CAS  Google Scholar 

  8. M.E. White, O. Bierwagen, M.Y. Tsai, J.S. Speck, Electron transport properties of antimony doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 106(9), 93704 (2009). https://doi.org/10.1063/1.3254241

    Article  CAS  Google Scholar 

  9. A. Ammari, B. Bellal, N. Zebbar, B. Benrabah, M. Trari, Thermal-frequency dependence study of the sub-band localized states effect in Sb-doped SnO2 based sol-gel thin films. Thin Solid Films 632, 66–72 (2017). https://doi.org/10.1016/j.tsf.2017.02.060

    Article  CAS  Google Scholar 

  10. H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, H. Koinuma, Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Appl. Phys. Lett. 80(1), 94–96 (2002). https://doi.org/10.1063/1.1430856

    Article  CAS  Google Scholar 

  11. I. Saadeddin, H.S. Hilal, B. Pecquenard, J. Marcus, A. Mansouri, C. Labrugere, M.A. Subramanian, G. Campet, Simultaneous doping of Zn and Sb in SnO2 ceramics: enhancement of electrical conductivity. Solid State Sci. 8(1), 7–13 (2006). https://doi.org/10.1016/j.solidstatestructures.2005.09.002

    Article  CAS  Google Scholar 

  12. J. Montero, J. Herrero, C. Guillen, Preparation of reactively sputtered Sb-doped SnO2 thin films: structural, electrical and optical properties. Sol Energy Mater. Sol. Cells 94(3), 612–616 (2010). https://doi.org/10.1016/j.solmat.2009.12.008

    Article  CAS  Google Scholar 

  13. H. Wang, S. Cao, B. Yang, H. Li, M. Wang, X. Hu, K. Sun, Z. Zang, NH4Cl-Modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process. Solar RRL (2019). https://doi.org/10.1002/solr.201900363

    Article  Google Scholar 

  14. T. Zhou, Z. Zang, J. Wei, J. Zheng, J. Hao, F. Ling, X. Tang, L. Fang, M. Zhou, Efficient charge carrier separation and excellent visible light photoresponse in Cu2O nanowires. Nano Energy 50, 118–125 (2018). https://doi.org/10.1016/j.nanoen.2018.05.028

    Article  CAS  Google Scholar 

  15. A.S. Hassanien, A.A. Akl, X-ray studies: CO2 pulsed laser annealing effects on the crystallographic properties, microstructures and crystal defects of vacuum-deposited nanocrystalline ZnSe thin films. CrystEngComm 20(44), 7120–7129 (2018). https://doi.org/10.1039/c8ce01614c

    Article  CAS  Google Scholar 

  16. D.H.O. Machado, J.H.D. da Silva, A. Tabata, L.V.A. Scalvi, Influence of thermal annealing on the properties of evaporated Er-doped SnO2. Mater. Res. Bull. (2019). https://doi.org/10.1016/j.materresbull.2019.110585

    Article  Google Scholar 

  17. A. Salehi, F.E. Ghodsi, J. Mazloom, S. Ebrahimi-Koodehi, Tuning of optical bandgap, conductivity parameters, and PL emissions of SnO2: Ni thin films under Ar, N2, and O2 annealing. Appl. Phys. A 124(10), 661 (2018). https://doi.org/10.1007/s00339-018-2087-2

    Article  CAS  Google Scholar 

  18. S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  CAS  Google Scholar 

  19. M.M. Bagheri-Mohagheghi, M. Shokooh-Saremi, The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique. J. Phys. D 37(8), 1248–1253 (2004). https://doi.org/10.1088/0022-3727/37/8/014

    Article  CAS  Google Scholar 

  20. L.K. Wang, J.Y. Yu, X.Y. Niu, L. Wang, C. Fu, R.M. Qiu, W.J. Yan, H.L. Zhao, J.K. Yang, Effect of F and Nb co-doping on structural, electrical and optical properties of spray deposited tin oxide thin films. Thin Solid Films 649(10), 147–153 (2018). https://doi.org/10.1016/j.tsf.2018.01.035

    Article  CAS  Google Scholar 

  21. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, https://doi.org/10.1063/1.1650041

    Article  CAS  Google Scholar 

  22. F. Xue, K. Li, J. Liu, Effect of Fe and N co-doping on structural, electrical and optical properties of tin oxide thin films. Mater. Lett. 236(24), 366–369 (2019). https://doi.org/10.1016/j.matlet.2018.10.070

    Article  CAS  Google Scholar 

  23. W.F. Mao, B.Y. Xiong, Q.C. Li, Y.W. Zhou, C.S. Yin, Y. Liu, C.Q. He, Influences of defects and Sb valence states on the temperature dependent conductivity of Sb doped SnO2 thin films. Phys. Lett. A 379(36), 1946–1950 (2015). https://doi.org/10.1016/j.physleta.2015.06.033

    Article  CAS  Google Scholar 

  24. M. Esro, S. Georgakopoulos, H. Lu, G. Vourlias, A. Krier, W.I. Milne, W.P. Gillin, G. Adamopoulos, Solution processed SnO2: Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes. J. Mater. Chem. C 4(16), 3563–3570 (2016). https://doi.org/10.1039/c5tc04117a

    Article  CAS  Google Scholar 

  25. S.D. Ponja, B.A.D. Williamson, S. Sathasivam, D.O. Scanlon, I.P. Parkin, C.J. Carmalt, Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. J. Mater. Chem. C 6(27), 7257–7266 (2018). https://doi.org/10.1039/c8tc01929k

    Article  CAS  Google Scholar 

  26. Y. Porte, R. Maller, H. Faber, H.N. AlShareef, T.D. Anthopoulos, M.A. McLachlan, Exploring and controlling intrinsic defect formation in SnO2 thin films. J. Mater. Chem. C 4(4), 758–765 (2016). https://doi.org/10.1039/c5tc03520a

    Article  CAS  Google Scholar 

  27. S. Caravati, M. Bernasconi, T.D. Kuhne, M. Krack, M. Parrinello, First-principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects. J. Phys. 21(25), 255501 (2009). https://doi.org/10.1088/0953-8984/21/25/255501

    Article  CAS  Google Scholar 

  28. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method. Appl. Surf. Sci. 258(7), 3255–3259 (2012). https://doi.org/10.1016/j.apsusc.2011.11.077

    Article  CAS  Google Scholar 

  29. H. Shen, X. Zhao, L. Duan, R. Liu, H. Wu, T. Hou, X. Jiang, H. Gao, Influence of interface combination of RGO-photosensitized SnO2@RGO core-shell structures on their photocatalytic performance. Appl. Surf. Sci. 391, 627–634 (2017). https://doi.org/10.1016/j.apsusc.2016.06.031

    Article  CAS  Google Scholar 

  30. H. Shen, X. Zhao, L. Duan, R. Liu, H. Li, Enhanced visible light photocatalytic activity in SnO2@g–C3N4 core–shell structures. Mater. Sci. Eng. B 218, 23–30 (2017). https://doi.org/10.1016/j.mseb.2017.01.006

    Article  CAS  Google Scholar 

  31. L. Znaidi, Sol-gel-deposited ZnO thin films: a review. Mater. Sci. Eng. B 174(1–3), 18–30 (2010). https://doi.org/10.1016/j.mseb.2010.07.001

    Article  CAS  Google Scholar 

  32. H. Shen, X.R. Zhao, L.B. Duan, R.D. Liu, H. Li, B.H. Wang, Effect of NaZn/Nai ratio on structural, optical, and electrical properties of Na-doped ZnO thin films. J. Appl. Phys. 121(15), 155303 (2017). https://doi.org/10.1063/1.4980172

    Article  CAS  Google Scholar 

  33. L.B. Duan, X.R. Zhao, J.M. Liu, W.C. Geng, H.N. Sun, H.Y. Xie, Effect of annealing atmosphere on structural, optical and electrical properties of Al-doped Zn1−xCdxO thin films. J. Sol-Gel Sci. Technol. 62(3), 344–350 (2012). https://doi.org/10.1007/s10971-012-2731-9

    Article  CAS  Google Scholar 

  34. G. Singla, K. Singh, O.P. Pandey, Williamson-Hall study on synthesized nanocrystalline tungsten carbide (WC). Appl. Phys. A 113(1), 237–242 (2013). https://doi.org/10.1007/s00339-012-7531-0

    Article  CAS  Google Scholar 

  35. T. Krishnakumar, R. Jayaprakash, N. Pinna, A.R. Phani, M. Passacantando, S. Santucci, Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J. Phys. Chem. Solids 70(6), 993–999 (2009). https://doi.org/10.1016/j.jpcs.2009.05.013

    Article  CAS  Google Scholar 

  36. J. Rockenberger, U. zum Felde, M. Tischer, L. Troger, M. Haase, H. Weller, Near edge X-ray absorption fine structure measurements (XANES) and extended X-ray absorption fine structure measurements (EXAFS) of the valence state and coordination of antimony in doped nanocrystalline SnO2. J. Chem. Phys. 112(9), 4296–4304 (2000). https://doi.org/10.1063/1.480975

    Article  CAS  Google Scholar 

  37. J. Tong, Y. Liu, Q. Peng, W. Hu, Q. Wu, An efficient Sb–SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium. J. Mater. Sci. 52(23), 13427–13443 (2017). https://doi.org/10.1007/s10853-017-1447-1

    Article  CAS  Google Scholar 

  38. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Structural and optoelectronic properties of antimony incorporated tin oxide thin films. J. Alloy Compd. 505(2), 416–422 (2010). https://doi.org/10.1016/j.jallcom.2010.06.091

    Article  CAS  Google Scholar 

  39. I.M. Costa, Y.N. Colmenares, P.S. Pizani, E.R. Leite, A.J. Chiquito, Sb doping of VLS synthesized SnO2 nanowires probed by Raman and XPS spectroscopy. Chem. Phys. Lett. 695, 125–130 (2018). https://doi.org/10.1016/j.cplett.2018.02.014

    Article  CAS  Google Scholar 

  40. D. Shuttleworth, Preparation of metal-polymer dispersions by plasma techniques-an esca investigation. J. Phys. Chem. 84(12), 1629–1634 (1980). https://doi.org/10.1021/j100449a038

    Article  CAS  Google Scholar 

  41. A. Chen, K.G. Zhu, H.C. Zhong, Q.Y. Shao, G.L. Ge, A new investigation of oxygen flow influence on ITO thin films by magnetron sputtering. Sol Energy Mater. Sol Cells 120, 157–162 (2014). https://doi.org/10.1016/j.solmat.2013.08.036

    Article  CAS  Google Scholar 

  42. J.M. Wu, A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires. Nanotechnology 21(23), 235501 (2010). https://doi.org/10.1088/0957-4484/21/23/235501

    Article  CAS  Google Scholar 

  43. R. Nasser, H. Elhouichet, Production of acceptor complexes in sol–gel ZnO thin films by Sb doping. J. Lumin. 196, 11–19 (2018). https://doi.org/10.1016/j.jlumin.2017.11.060

    Article  CAS  Google Scholar 

  44. A.A. Yadav, S.C. Pawar, D.H. Patil, M.D. Ghogare, Properties of (200) oriented, highly conductive SnO2 thin films by chemical spray pyrolysis from non-aqueous medium: Effect of antimony doping. J. Alloy Compd. 652, 145–152 (2015). https://doi.org/10.1016/j.jallcom.2015.08.197

    Article  CAS  Google Scholar 

  45. C. Han, L.B. Duan, X.R. Zhao, Z.M. Hu, Y.F. Niu, W.C. Geng, Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloy Compd. 770, 854–863 (2019). https://doi.org/10.1016/j.jallcom.2018.08.217

    Article  CAS  Google Scholar 

  46. T.W. Kim, D.U. Lee, Y.S. Yoon, Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. J. Appl. Phys. 88(6), 3759–3761 (2000). https://doi.org/10.1063/1.1288021

    Article  CAS  Google Scholar 

  47. D. Calestani, L. Lazzarini, G. Salviati, M. Zha, Morphological, structural and optical study of quasi-1D SnO2 nanowires and nanobelts. Cryst. Res. Technol. 40(10–11), 937–941 (2005). https://doi.org/10.1002/crat.200410463

    Article  CAS  Google Scholar 

  48. S. Rani, S.C. Roy, N. Karar, M.C. Bhatnagar, Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films. Solid State Commun. 141(4), 214–218 (2007). https://doi.org/10.1016/j.ssc.2006.10.036

    Article  CAS  Google Scholar 

  49. A.S. Hassanien, I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-xSbxSe50Te35 thin films: Influences of Sb upon some optical characterizations and physical parameters. J. Alloy Compd. 798, 750–763 (2019). https://doi.org/10.1016/j.jallcom.2019.05.252

    Article  Google Scholar 

  50. A.S. Hassanien, A.A. Akl, Influence of thermal and compositional variations on conduction mechanisms and localized state density of amorphous Cd50S50−xSex thin films. J. Non-Cryst. Solids 487, 28–36 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.02.018

    Article  CAS  Google Scholar 

  51. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi 15(2), 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  52. L.B. Duan, X.R. Zhao, J.M. Liu, W.C. Geng, H.Y. Xie, H.N. Sun, Effect of annealing ambient on the structural, optical and electrical properties of (Mg, Al)-codoped ZnO thin films. Phys Scr 85(3), 035709 (2012). https://doi.org/10.1088/0031-8949/85/03/035709

    Article  CAS  Google Scholar 

  53. K.H. Kim, S.W. Lee, D.W. Shin, C.G. Park, Effect of antimony addition on electrical and optical-properties of tin oxide film. J. Am. Ceram. Soc. 77(4), 915–921 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07247.x

    Article  CAS  Google Scholar 

  54. S. Gupta, B.C. Yadav, P.K. Dwivedi, B. Das, Microstructural, optical and electrical investigations of Sb-SnO2 thin films deposited by spray pyrolysis. Mater. Res. Bull. 48(9), 3315–3322 (2013). https://doi.org/10.1016/j.materresbull.2013.05.001

    Article  CAS  Google Scholar 

  55. B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, H. Hahn, Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries. J. Appl. Phys. 108(10), 103721 (2010). https://doi.org/10.1063/1.3511346

    Article  CAS  Google Scholar 

  56. L. Nulhakim, H. Makino, Change of scattering mechanism and annealing out of defects on Ga-doped ZnO films deposited by radio-frequency magnetron sputtering. J. Appl. Phys. 119(23), 235302 (2016). https://doi.org/10.1063/1.4954001

    Article  CAS  Google Scholar 

  57. M. Cao, Y. Li, J. Yang, Y. Chen, Study for double-layered AZO/ATO transparent conducting thin film. J. Phys. 419, 012022 (2013). https://doi.org/10.1088/1742-6596/419/1/012022

    Article  CAS  Google Scholar 

  58. P. Ouyang, H. Zhang, Y. Wang, W. Chen, Z. Li, Electrochemical & microstructural investigations of magnetron sputtered nanostructured ATO thin films for application in Li-ion battery. Electrochim Acta 130, 232–238 (2014). https://doi.org/10.1016/j.electacta.2014.03.021

    Article  CAS  Google Scholar 

  59. S. Ebrahimi-Koodehi, F.E. Ghodsi, J. Mazloom, Optical, electrical, and electrochemical behavior of p-type nanostructured SnO2:Ni (NTO) thin films. J. Solid State Electrochem. 22(8), 2375–2384 (2018). https://doi.org/10.1007/s10008-018-3951-x

    Article  CAS  Google Scholar 

  60. V. Fauzia, M.N. Yusnidar, L.H. Lalasari, A. Subhan, A.A. Umar, High figure of merit transparent conducting Sb-doped SnO2 thin films prepared via ultrasonic spray pyrolysis. J. Alloy Compd. 720, 79–85 (2017). https://doi.org/10.1016/j.jallcom.2017.05.243

    Article  CAS  Google Scholar 

  61. A.R. Babar, K.Y. Rajpure, Effect of intermittent time on structural, optoelectronic, luminescence properties of sprayed antimony doped tin oxide thin films. J. Anal. Appl. Pyrol. 112, 214–220 (2015). https://doi.org/10.1016/j.jaap.2015.01.024

    Article  CAS  Google Scholar 

  62. A. Ammari, M. Trari, Electronic states in tin oxide thin films upon photo and electrochemical analysis. Colloids Surf. A 561, 178–186 (2019). https://doi.org/10.1016/j.colsurfa.2018.10.070

    Article  CAS  Google Scholar 

  63. C. Kilic, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88(9), 095501 (2002). https://doi.org/10.1103/PhysRevLett.88.095501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. 51302218 and 51472205), the Natural Science Basic Research Plan in Shanxi Province of China (Grant No. 2018JM5039), the Innovative Training Project for Undergraduate Students of China (Grant No. 201810699300), and the Analytical and Testing center of Northwestern Polytechnical University in Xi’an.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libing Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Duan, L., Zhao, X. et al. Effect of Sb doping on structural and photoelectric properties of SnO2 thin films. J Mater Sci: Mater Electron 31, 3289–3302 (2020). https://doi.org/10.1007/s10854-020-02877-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02877-y

Navigation