Skip to main content
Log in

Enhancing the red upconversion of water-soluble β-NaErF4:Yb nanocrystals through Ca2+ doping

  • Brief Communication: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

With the aim of developing lanthanide fluoride-based nanoparticles (NPs) with enhanced upconversion (UC) luminescence properties, Ca2+-doped water-soluble β-NaErF4:Yb nanocrystals are prepared by a facile solvothermal reaction using ethylene glycol and water as the solvents and comb-like superplasticizer (SP), polyacrylic-co-methyl allyl polyoxyethylene ether copolymer as the capping agent. The SP-capped upconversion nanoparticles (UCNPs) are characterized by X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results show that the capping agent has great influence on the morphology and colloidal solubility of the nanocrystals. The morphological and phase evolution of the nanocrystals is studied. Furthermore, bright red UC luminescence is observed when the sol is irradiated by a 980 nm laser, and the red UC photoluminescence (UCPL) emission is enhanced by eight times upon doping with 50 mol% Ca2+. The decay time and stability of the UCPL are also discussed. With the efficient stable red UC, the Ca2+ doped water-soluble NaErF4:Yb nanocrystals may find use in various optical applications.

Highlights

  • For the first time, superplasticizer is used as the capping agent to synthesize NaErF4:Yb upconversion nanocrystals in a simple solvothermal method.

  • Upto 50mol% Ca2+ is doped into the NaErF4:Yb nanocrystals, the doped nanoparticles are monodisperse and uniform, exhibiting good crystallinity with a pure hexagonal structure.

  • Transparent sols are obtained due to the surface of the UCNPs being capped with superplasticizer.

  • The red UCPL intensity of the 50mol% Ca2+ doped NaErF4:Yb is increased about eight times compared with that of the nondoped sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Auzel F (2004) Chem Rev 104:139–174

    Article  CAS  Google Scholar 

  2. Li CX, Lin J (2010) J Mater Chem 20:683–6847

    Article  Google Scholar 

  3. Haase M, Schafer H (2011) Angew Chem Int Ed 50:5808–5829

    Article  CAS  Google Scholar 

  4. Wang F, Liu XG (2009) Chem Soc Rev 38:976–989

    Article  CAS  Google Scholar 

  5. Sun LD, Wang YF, Yan CH (2014) Acc Chem Res 47:1001–1009

    Article  CAS  Google Scholar 

  6. Wang GF, Peng Q, Li YD (2011) Acc Chem Res 44:322–332

    Article  Google Scholar 

  7. Gai SL, Li CX, Yang PP, Lin J (2014) Chem Rev 114:2343–2389

    Article  CAS  Google Scholar 

  8. Peng LL, Huang M, Cao SX, Liu BT, Han T, Zhao C (2016) J Sol-Gel Sci Technol 78:307–312

    Article  CAS  Google Scholar 

  9. Zhou J, Liu Z, Li FY (2012) Chem Soc Rev 41:1323–1349

    Article  CAS  Google Scholar 

  10. Wang F, Banerjee D, Liu YS, Chen XY, Liu XG (2010) Analyst 135:1839–1854

    Article  CAS  Google Scholar 

  11. Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Small 6:2781–2795

    Article  CAS  Google Scholar 

  12. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Curr Opin Chem Biol 14:582–596

    Article  CAS  Google Scholar 

  13. Gorris HH, Wolfbeis OS (2013) Angew Chem Int Ed 52:3584–3600

    Article  CAS  Google Scholar 

  14. Mikolášová D, Rubešová K (2018) J Sol-Gel Sci Technol 86:274–284

    Article  Google Scholar 

  15. Wang F, Wang J, Liu XG (2010) Angew Chem Int Ed 49:7456–7460

    Article  CAS  Google Scholar 

  16. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA (2006) J Am Chem Soc 128:7444–7445

    Article  CAS  Google Scholar 

  17. Wang X, Zhuang J, Peng Q, Li YD (2005) Nature 437:121–124

    Article  CAS  Google Scholar 

  18. Tian G, Zhao YL et al. (2014) Chem Asian J 9:1655–1662

    Article  CAS  Google Scholar 

  19. Chen GY, Liu HC, Somesfalean G, Liang HJ, Zhang ZG (2009) Nanotechnology 20:385704

    Article  Google Scholar 

  20. Tian G, Gu ZJ, Zhao YL et al. (2012) Adv Mater 24:1226–1231

    Article  CAS  Google Scholar 

  21. Wei W, Zhang Y, Chen R, Tan Y (2014) Chem Mater 26:5183–5186

    Article  CAS  Google Scholar 

  22. Zeng SJ, Liu HR, Hao JH (2014) Adv Funct Mater 24:4051–4059

    Article  CAS  Google Scholar 

  23. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH (2006) J Am Chem Soc 128:6426–6436

    Article  CAS  Google Scholar 

  24. Krut’ko VA, Komova MG, Pominova DV (2019) J Sol-Gel Sci Technol 92:442–448

    Article  Google Scholar 

  25. Hudry D, Richards BS (2019) Adv Mater 31:1900623

    Article  Google Scholar 

  26. Li YB, Li XL, Xue ZL, Hao JH (2017) Adv Healthc Mater 6:1601231

    Article  Google Scholar 

  27. Lei L, Chen D, Xu J, Zhang R, Wang YS (2014) Chem Asian J 9:728–733

    Article  CAS  Google Scholar 

  28. Judd BR (1962) Phys Rev 127:750–761

    Article  CAS  Google Scholar 

  29. Liu XM, Kong XG, Zhang H (2011) Chem Commun 47:11957–11959

    Article  CAS  Google Scholar 

  30. Cheng Q, Sui J, Cai W (2012) Nanoscale 4:779–784

    Article  CAS  Google Scholar 

  31. Boyer JC, van Veggel FCJM (2010) Langmuir 26:1157–1164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Research Group of Rare Earth Resource Exploiting and Luminescent Materials (2017KCXTD022), Science and Technology Bureau of Zhanjiang (2016A02017) and Lingnan Normal University (ZL1507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunliang Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Zhou, X., Tang, X. et al. Enhancing the red upconversion of water-soluble β-NaErF4:Yb nanocrystals through Ca2+ doping. J Sol-Gel Sci Technol 93, 473–478 (2020). https://doi.org/10.1007/s10971-019-05215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05215-9

Keywords

Navigation