Skip to main content
Log in

Real-time in situ magnetic measurement of the intracellular biodegradation of iron oxide nanoparticles in a stem cell-spheroid tissue model

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The use of magnetic nanoparticles in nanomedicine keeps expanding and, for most applications, the nanoparticles are internalized in cells then left within, bringing the need for accurate, fast, and easy to handle methodologies to assess their behavior in the cellular environment. Herein, a benchtop-size magnetic sensor is introduced to provide real-time precise measurement of nanoparticle magnetism within living cells. The values obtained with the sensor, of cells loaded with different doses of magnetic nanoparticles, are first compared to conventional vibrating sample magnetometry (VSM), and a strong correlation remarkably validates the use of the magnetic sensor as magnetometer to determine the nanoparticle cellular uptake. The sensor is then used to monitor the progressive intracellular degradation of the nanoparticles, over days. Importantly, this real-time in situ measure is performed on a stem cell-spheroid tissue model and can run continuously on a same spheroid, with cells kept alive within. Besides, such continuous magnetic measurement of cell magnetism at the tissue scale does not impact either tissue formation, viability, or stem cell function, including differentiation and extracellular matrix production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, H.; Bruns, O. T.; Kaul, M. G.; Hansen, E. C.; Barch, M.; Wiśniowska, A.; Chen, O.; Chen, Y.; Li, N.; Okada, S. et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc. Natl. Acad. Sci. U.S.A2017, 114, 2325–2330.

    CAS  Google Scholar 

  2. Hachani, R.; Lowdell, M.; Birchall, M.; Hervault, A.; Mertz, D.; Begin-Colin, S.; Thanh, N. T. K. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale2016, 8, 3278–3287.

    CAS  Google Scholar 

  3. Blanco-Andujar, C.; Walter, A.; Cotin, G.; Bordeianu, C.; Mertz, D.; Felder-Flesch, D.; Begin-Colin, S. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine2016, 11, 1889–1910.

    CAS  Google Scholar 

  4. Cotin, G.; Blanco-Andujar, C.; Nguyen, D. V.; Affolter, C.; Boutry, S.; Boos, A.; Ronot, P.; Uring-Lambert, B.; Choquet, P.; Zorn, P. E. et al. Dendron based antifouling, MRI and magnetic hyperthermia properties of different shaped iron oxide nanoparticles. Nanotechnology2019, 30, 374002.

    CAS  Google Scholar 

  5. Cortajarena, A. L.; Ortega, D.; Ocampo, S. M.; Gonzalez-García, A.; Couleaud, P.; Miranda, R.; Belda-Iniesta, C.; Ayuso-Sacido, A. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine2014, 1, 2.

    Google Scholar 

  6. Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperthermia2010, 26, 790–795.

    Google Scholar 

  7. Blanco-Andujar, C.; Teran, F. J.; Ortega, D. Current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia. In Iron Oxide Nanoparticles for Biomedical Applications. Mahmoudi, M.; Laurent, S., Eds.; Metal Oxides: Elsevier, 2018; pp 197–245.

    Google Scholar 

  8. Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol.2011, 103, 317–324.

    Google Scholar 

  9. Espinosa, A.; Kolosnjaj-Tabi, J.; Abou-Hassan, A.; Sangnier, A. P.; Curcio, A.; Silva, A. K. A.; Di Corato, R.; Neveu, S.; Pellegrino, T.; Liz-Marzán, L. M. et al. Magnetic (Hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo. Adv. Funct. Mater.2018, 28, 1803660.

    Google Scholar 

  10. Kakwere, H.; Leal, M. P.; Materia, M. E.; Curcio, A.; Guardia, P.; Niculaes, D.; Marotta, R.; Falqui, A.; Pellegrino, T. Functionalization of strongly interacting magnetic nanocubes with (thermo)responsive coating and their application in hyperthermia and heat-triggered drug delivery. ACS Appl. Mater. Interfaces2015, 7, 10132–10145.

    CAS  Google Scholar 

  11. Sandre, O.; Genevois, C.; Garaio, E.; Adumeau, L.; Mornet, S.; Couillaud, F. In vivo imaging of local gene expression induced by magnetic hyperthermia. Genes2017, 8, 61.

    Google Scholar 

  12. Cazares-Cortes, E.; Cabana, S.; Boitard, C.; Nehlig, E.; Griffete, N.; Fresnais, J.; Wilhelm, C.; Abou-Hassan, A.; Ménager, C. Recent insights in magnetic hyperthermia: From the “hot-spot” effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Adv. Drug Deliv. Rev.2019, 138, 233–246.

    CAS  Google Scholar 

  13. Blanco-Andujar, C.; Ortega, D.; Southern, P.; Pankhurst, Q. A.; Thanh, N. T. K. High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: Microwave synthesis, and the role of core-to-core interactions. Nanoscale2015, 7, 1768–1775.

    CAS  Google Scholar 

  14. Asensio, J. M.; Marbaix, J.; Mille, N.; Lacroix, L. M.; Soulantica, K.; Fazzini, P. F.; Carrey, J.; Chaudret, B. To heat or not to heat: A study of the performances of iron carbide nanoparticles in magnetic heating. Nanoscale2019, 11, 5402–5411.

    CAS  Google Scholar 

  15. Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments. Appl. Phys. Lett.2016, 109, 032402.

    Google Scholar 

  16. Plan Sangnier, A.; Preveral, S.; Curcio, A.; Silva, A. K. A.; Lefèvre, C. T.; Pignol, D.; Lalatonne, Y.; Wilhelm, C. Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: Photothermia is far more efficient than magnetic hyperthermia. J. Control. Release2018, 279, 271–281.

    CAS  Google Scholar 

  17. Chu, M. Q.; Shao, Y. X.; Peng, J. L.; Dai, X. Y.; Li, H. K.; Wu, Q. S.; Shi, D. L. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials2013, 34, 4078–4088.

    CAS  Google Scholar 

  18. Zhou, Z. G.; Sun, Y. N.; Shen, J. C.; Wei, J.; Yu, C.; Kong, B.; Liu, W.; Yang, H.; Yang, S. P.; Wang, W. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials2014, 35, 7470–7478.

    CAS  Google Scholar 

  19. Shen, S.; Wang, S.; Zheng, R.; Zhu, X. Y.; Jiang, X. G.; Fu, D. L.; Yang, W. L. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials2015, 39, 67–74.

    CAS  Google Scholar 

  20. Ye, D. W.; Li, Y.; Gu, N. Magnetic labeling of natural lipid encapsulations with iron-based nanoparticles. Nano Res.2018, 11, 2970–2991.

    CAS  Google Scholar 

  21. Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev.2016, 116, 5338–5431.

    CAS  Google Scholar 

  22. Carregal-Romero, S.; Guardia, P.; Yu, X.; Hartmann, R.; Pellegrino, T.; Parak, W. J. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules. Nanoscale2015, 7, 570–576.

    CAS  Google Scholar 

  23. Mertz, D.; Sandre, O.; Bégin-Colin, S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim. Biophys. Acta Gen. Subj.2017, 1861, 1617–1641.

    CAS  Google Scholar 

  24. Adedoyin, A. A.; Ekenseair, A. K. Biomedical applications of magneto-responsive scaffolds. Nano Res.2018, 11, 5049–5064.

    CAS  Google Scholar 

  25. Souza, G. R.; Molina, J. R.; Raphael, R. M.; Ozawa, M. G.; Stark, D. J.; Levin, C. S.; Bronk, L. F.; Ananta, J. S.; Mandelin, J.; Georgescu, M. M. et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol, 2010, 5, 291–296.

    CAS  Google Scholar 

  26. Mattix, B.; Olsen, T. R.; Gu, Y.; Casco, M.; Herbst, A.; Simionescu, D. T.; Visconti, R. P.; Kornev, K. G.; Alexis, F. Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomater.2014, 10, 623–629.

    CAS  Google Scholar 

  27. Hachani, R.; Lowdell, M.; Birchall, M.; Thanh, N. T. K. Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. Nanoscale2013, 5, 11362–11373.

    CAS  Google Scholar 

  28. Pham, B. T. T.; Colvin, E. K.; Pham, N. T. H.; Kim, B. J.; Fuller, E. S.; Moon, E. A.; Barbey, R.; Yuen, S.; Rickman, B. H.; Bryce, N. S. et al. Biodistribution and clearance of stable superparamagnetic maghemite iron oxide nanoparticles in mice following intraperitoneal administration. Int. J. Mol. Sci.2018, 19, 205.

    Google Scholar 

  29. Bargheer, D.; Giemsa, A.; Freund, B.; Heine, M.; Waurisch, C.; Stachowski, G. M.; Hickey, S. G.; Eychmüller, A.; Heeren, J.; Nielsen, P. The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein J. Nanotechnol.2015, 6, 111–123.

    Google Scholar 

  30. Freund, B.; Tromsdorf, U. I.; Bruns, O. T.; Heine, M.; Giemsa, A.; Bartelt, A.; Salmen, S. C.; Raabe, N.; Heeren, J.; Ittrich, H. et al. A simple and widely applicable method to 59Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano2012, 6, 7318–7325.

    CAS  Google Scholar 

  31. Singh, S. P.; Rahman, M. F.; Murty, U. S. N.; Mahboob, M.; Grover, P. Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicol. Appl. Pharmacol.2013, 266, 56–66.

    CAS  Google Scholar 

  32. Gu, L.; Fang, R. H.; Sailor, M. J.; Park, J. H. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano2012, 6, 4947–4954.

    CAS  Google Scholar 

  33. Mazuel, F.; Espinosa, A.; Luciani, N.; Reffay, M.; Le Borgne, R.; Motte, L.; Desboeufs, K.; Michel, A.; Pellegrino, T.; Lalatonne, Y. et al. Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano2016, 10, 7627–7638.

    CAS  Google Scholar 

  34. Plan Sangnier, A.; Van De Walle, A. B.; Curcio, A.; Le Borgne, R.; Motte, L.; Lalatonne, Y.; Wilhelm, C. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells. Nanoscale2019, 11, 16488–16498.

    CAS  Google Scholar 

  35. Van De Walle, A.; Plan Sangnier, A.; Abou-Hassan, A.; Curcio, A.; Hémadi, M.; Menguy, N.; Lalatonne, Y.; Luciani, N.; Wilhelm, C. Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proc. Natl. Acad. Sci. USA2019, 116, 4044–4053.

    CAS  Google Scholar 

  36. Hemery, G.; Garanger, E.; Lecommandoux, S.; Wong, A. D.; Gillies, E. R.; Pedrono, B.; Bayle, T.; Jacob, D.; Sandre, O. Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia. J. Phys. D.: Appi. Phys.2015, 48, 494001.

    Google Scholar 

  37. Wang, L.; Wang, Z. J.; Li, X. M.; Zhang, Y.; Yin, M.; Li, J.; Song, H. Y.; Shi, J. Y.; Ling, D. S.; Wang, L. H. et al. Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. Nano Res.2018, 11, 2746–2755.

    CAS  Google Scholar 

  38. Wilhelm, C.; Gazeau, F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials2008, 29, 3161–3174.

    CAS  Google Scholar 

  39. Negi, H.; Takeuchi, S.; Kamei, N.; Yanada, S.; Adachi, N.; Ochi, M. In vitro safety and quality of magnetically labeled human mesenchymal stem cells preparation for cartilage repair. Tissue Eng. Part C: Methods2019, 25, 324–333.

    CAS  Google Scholar 

  40. Van De Walle, A.; Faissal, W.; Wilhelm, C.; Luciani, N. Role of growth factors and oxygen to limit hypertrophy and impact of high magnetic nanoparticles dose during stem cell chondrogenesis. Comput. Struct. Biotechnol. J.2018, 16, 532–542.

    CAS  Google Scholar 

  41. Chang, Y. K.; Liu, Y. P.; Ho, J. H.; Hsu, S. C.; Lee, O. K. Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells. J. Orthop. Res.2012, 30, 1499–1506.

    CAS  Google Scholar 

  42. Chen, Y. C.; Hsiao, J. K.; Liu, H. M.; Lai, I. Y.; Yao, M.; Hsu, S. C.; Ko, B. S.; Chen, Y. C.; Yang, C. S.; Huang, D. M. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol. Appl. Pharmacol.2010, 245, 272–279.

    CAS  Google Scholar 

  43. Huang, D. M.; Hsiao, J. K.; Chen, Y. C.; Chien, L. Y.; Yao, M.; Chen, Y. K.; Ko, B. S.; Hsu, S. C.; Tai, L. A.; Cheng, H. Y. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials2009, 30, 3645–3651.

    CAS  Google Scholar 

  44. Roeder, E.; Henrionnet, C.; Goebel, J. C.; Gambier, N.; Beuf, O.; Grenier, D.; Chen, B. L.; Vuissoz, P. A.; Gillet, P.; Pinzano, A. Dose-response of superparamagnetic iron oxide labeling on mesenchymal stem cells chondrogenic differentiation: A multi-scale in vitro study. PLoS One2014, 9, e98451.

    Google Scholar 

  45. Nikitin, P. I.; Vetoshko, P. M.; Ksenevich, T. I. New type of biosensor based on magnetic nanoparticle detection. J. Magn. Magn. Mater.2007, 311, 445–449.

    CAS  Google Scholar 

  46. Lenglet, L.; Motte, L. Neel effect: Exploiting the nonlinear behavior of superparamagnetic nanoparticles for applications in life sciences up to electrical engineering. In Novel Magnetic Nanostructures. Domracheva, N.; Caporali, M.; Rentschler, E., Eds.; Elsevier: Amsterdam, 2018; pp 247–265.

    Google Scholar 

  47. Richard, S.; Eder, V.; Caputo, G.; Journé, C.; Ou, P.; Bolley, J.; Louedec, L.; Guenin, E.; Motte, L.; Pinna, N. et al. USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T2 MRI contrast agent. Nanomedicine (Lond)2016, 11, 2769–2779.

    CAS  Google Scholar 

  48. Motte, L.; Benyettou, F.; De Beaucorps, C.; Lecouvey, M.; Milesovic, I.; Lalatonne, Y. Multimodal superparamagnetic nanoplatform for clinical applications: Immunoassays, imaging & therapy. Faraday Discuss.2011, 149, 211–225.

    CAS  Google Scholar 

  49. Kostura, L.; Kraitchman, D. L.; Mackay, A. M.; Pittenger, M. F.; Bulte, J. W. M. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed.2004, 17, 513–517.

    Google Scholar 

  50. Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res.2016, 9, 2203–2225.

    CAS  Google Scholar 

  51. Tamion, A.; Hillenkamp, M.; Hillion, A.; Maraloiu, V. A.; Vlaicu, I. D.; Stefan, M.; Ghica, D.; Rositi, H.; Chauveau, F.; Blanchin, M. G. et al. Ferritin surplus in mouse spleen 14 months after intravenous injection of iron oxide nanoparticles at clinical dose. Nano Res.2016, 9, 2398–2410.

    CAS  Google Scholar 

  52. Nikitin, P. I.; Vetoshko, P. M.; Ksenevich, T. I. Magnetic immunoassays. Sens. Lett.2007, 5, 296–299.

    CAS  Google Scholar 

  53. Guénin, E.; Lalatonne, Y.; Bolley, J.; Milosevic, I.; Platas-Iglesias, C.; Motte, L. Catechol versus bisphosphonate ligand exchange at the surface of iron oxide nanoparticles: Towards multi-functionalization. J. Nanopart. Res.2014, 16, 2596.

    Google Scholar 

  54. Milosevic, I.; Warmont, F.; Lalatonne, Y.; Motte, L. Magnetic metrology for iron oxide nanoparticle scaled-up synthesis. RSC Adv.2014, 4, 49086–49089.

    CAS  Google Scholar 

  55. Geinguenaud, F.; Souissi, I.; Fagard, R.; Motte, L.; Lalatonne, Y. Electrostatic assembly of a DNA superparamagnetic nano-tool for simultaneous intracellular delivery and in situ monitoring. Nanomedicine2012, 8, 1106–1115.

    CAS  Google Scholar 

  56. Geinguenaud, F.; Souissi, I.; Fagard, R.; Lalatonne, Y.; Motte, L. Easily controlled grafting of oligonucleotides on γFe2O3 Nanoparticles: Physicochemical characterization of DNA organization and biological activity studies. J. Phys. Chem. B2014, 118, 1535–1544.

    CAS  Google Scholar 

  57. Benyettou, F.; Fahs, H.; Elkharrag, R.; Bilbeisi, R. A.; Asma, B.; Rezgui, R.; Motte, L.; Magzoub, M.; Brandel, J.; Olsen, J. C. et al. Selective growth inhibition of cancer cells with doxorubicin-loaded CB[7]-modified iron-oxide nanoparticles. RSC Adv.2017, 7, 23827–23834.

    Google Scholar 

  58. Nikitin, M. P.; Vetoshko, P. M.; Brusentsov, N. A.; Nikitin, P. I. Highly sensitive room-temperature method of non-invasive in vivo detection of magnetic nanoparticles. J. Magn. Magn. Mater.2009, 321, 1658–1661.

    CAS  Google Scholar 

  59. Nikitin, M.; Yuriev, M.; Brusentsov, N.; Vetoshko, P.; Nikitin, P. Non-invasive in vivo mapping and long-term monitoring of magnetic nanoparticles in different organs of animals. AIP Conf. Proc.2010, 1311, 452–457.

    CAS  Google Scholar 

  60. De Montferrand, C.; Hu, L.; Milosevic, I.; Russier, V.; Bonnin, D.; Motte, L.; Brioude, A.; Lalatonne, Y. Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater.2013, 9, 6150–6157.

    CAS  Google Scholar 

  61. Arbab, A. S.; Wilson, L. B.; Ashari, P.; Jordan, E. K.; Lewis, B. K.; Frank, J. A. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: Implications for cellular magnetic resonance imaging. NMR Biomed.2005, 18, 383–389.

    CAS  Google Scholar 

  62. Gutiérrez, L.; Romero, S.; Da Silva, G. B.; Costo, R.; Vargas, M. D.; Ronconi, C. M.; Serna, C. J.; Veintemillas-Verdaguer, S.; Del Puerto Morales, M. Degradation of magnetic nanoparticles mimicking lysosomal conditions followed by AC susceptibility. Biomed. Tech. (Berl)2015, 60, 417–425.

    Google Scholar 

  63. Soenen, S. J. H.; Himmelreich, U.; Nuytten, N.; Pisanic II, T. R.; Ferrari, A.; De Cuyper, M. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small2010, 6, 2136–2145.

    CAS  Google Scholar 

  64. Garcés, V.; Rodríguez-Nogales, A.; González, A.; Gálvez, N.; Rodríguez-Cabezas, M. E.; García-Martin, M. L.; Gutiérrez, L.; Rondón, D.; Olivares, M.; Gálvez, J. et al. Bacteria-carried iron oxide nanoparticles for treatment of anemia. Bioconjugate Chem.2018, 29, 1785–1791.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC-2014-CoG project MaTissE #648779). The authors would like to acknowledge the CNanoMat physico-chemical characterizations platform of University Paris 13, and Nicolas Chevalier for his help in controlling the CO2 level in the home-made incubator associated to the magnetic sensor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aurore Van de Walle, Laurence Motte, Yoann Lalatonne or Claire Wilhelm.

Electronic Supplementary Material

12274_2020_2631_MOESM1_ESM.pdf

Real-time in situ magnetic measurement of the intracellular biodegradation of iron oxide nanoparticles in a stem cell-spheroid tissue model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Walle, A., Fromain, A., Sangnier, A.P. et al. Real-time in situ magnetic measurement of the intracellular biodegradation of iron oxide nanoparticles in a stem cell-spheroid tissue model. Nano Res. 13, 467–476 (2020). https://doi.org/10.1007/s12274-020-2631-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2631-1

Keywords

Navigation