Skip to main content
Log in

Bio-inspired micro/nanostructures for flexible and stretchable electronics

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired the design of next-generation electronics with advanced functionalities. This review focuses on emerging bio-inspired strategies for the development of flexible and stretchable electronics that can accommodate mechanical deformations and integrate seamlessly with biological systems. We will provide an overview of the practical considerations in the materials and structure designs of flexible and stretchable electronics. Recent progress in bio-inspired pressure/strain sensors, stretchable electrodes, mesh electronics, and flexible energy devices are then discussed, with an emphasis on their unconventional micro/nanostructure designs and advanced functionalities. Finally, current challenges and future perspectives are identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano2017, 11, 9614–9635.

    Article  CAS  Google Scholar 

  2. Wang, J. X.; Lin, M. F.; Park, S.; Lee, P. S. Deformable conductors for human-machine interface. Mater. Today2018, 21, 508–526.

    Article  Google Scholar 

  3. Zang, Y. P.; Zhang, F. J.; Di, C. A.; Zhu, D. B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz.2015, 2, 140–156.

    Article  CAS  Google Scholar 

  4. Bao, Z. N.; Chen, X. D. Flexible and stretchable devices. Adv. Mater.2016, 28, 4177–4179.

    Article  CAS  Google Scholar 

  5. Kim, J.; Lee, M.; Rhim, J. S.; Wang, P. L.; Lu, N. S.; Kim, D. H. Next-generation flexible neural and cardiac electrode arrays. Biomed. Eng. Lett.2014, 4, 95–108.

    Article  Google Scholar 

  6. Zhou, T.; Hong, G. S.; Fu, T. M.; Yang X.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc. Natl. Acad. Sci. USA2017, 114, 5894–5899.

    Article  CAS  Google Scholar 

  7. Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev.2017, 117, 12893–12941.

    Article  CAS  Google Scholar 

  8. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater.2019, 1904765.

    Google Scholar 

  9. Jian, M. Q.; Xia, K. L.; Wang, Q.; Yin, Z.; Wang, H. M.; Wang, C. Y.; Xie, H. H.; Zhang, M. C.; Zhang, Y. Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater.2017, 27, 1606066.

    Article  CAS  Google Scholar 

  10. Qiu, Z. G.; Wan, Y. B.; Zhou, W. H.; Yang, J. Y.; Yang, J. L.; Huang, J.; Zhang, J. M.; Liu, Q. X.; Huang, S. Y.; Bai, N. N. et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf. Adv. Funct. Mater.2018, 28, 1802343.

    Article  CAS  Google Scholar 

  11. Gao, B. B.; Wang, X.; Li, T.; Feng, Z. Q.; Wang, C. Y.; Gu, Z. Z. Gecko-inspired paper artificial skin for intimate skin contact and multisensing. Adv. Mater. Technol.2019, 4, 1800392.

    Article  CAS  Google Scholar 

  12. Kang, H.; Zhao, C. L.; Huang, J. R.; Ho, D. H.; Megra, Y. T.; Suk, J. W.; Sun, J.; Wang, Z. L.; Sun, Q. J.; Cho, J. H. Fingerprint-inspired conducting hierarchical wrinkles for energy-harvesting e-skin. Adv. Funct. Mater.2019, 29, 1903580.

    Article  CAS  Google Scholar 

  13. Li, T.; Luo, H.; Qin, L.; Wang, X. W.; Xiong, Z. P.; Ding, H. Y.; Gu, Y.; Liu, Z.; Zhang, T. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small2016, 12, 5042–5048.

    Article  CAS  Google Scholar 

  14. Wan, Y. B.; Qiu, Z. G.; Hong, Y.; Wang, Y.; Zhang, J. M.; Liu, Q. X.; Wu, Z. G.; Guo, C. F. A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv. Electron. Mater.2018, 4, 1700586.

    Article  CAS  Google Scholar 

  15. Su, B.; Gong, S.; Ma, Z.; Yap, L. W.; Cheng, W. L. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small2015, 11, 1886–1891.

    Article  CAS  Google Scholar 

  16. Nie, P.; Wang, R. R.; Xu, X. J.; Cheng, Y.; Wang, X.; Shi, L. J.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces2017, 9, 14911–14919.

    Article  CAS  Google Scholar 

  17. Wei, Y.; Chen, S.; Lin, Y.; Yang, Z. M.; Liu, L. Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure. J. Mater. Chem. C2015, 3, 9594–9602.

    Article  CAS  Google Scholar 

  18. Bae, G. Y.; Pak, S. W.; Kim, D.; Lee, G.; Kim D. H.; Chung, Y.; Cho, K. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater.2016, 28, 5300–5306.

    Article  CAS  Google Scholar 

  19. Shi, J. D.; Wang, L.; Dai, Z. H.; Zhao, L. Y.; Du, M. D.; Li, H. B.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small2018, 14, 1800819.

    Article  CAS  Google Scholar 

  20. Lee, Y.; Park, J.; Cho, S.; Shin, Y. E.; Lee, H.; Kim, J.; Myoung, J.; Cho, S.; Kang, S.; Baig, C. et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano2018, 12, 4045–4054.

    Article  CAS  Google Scholar 

  21. Park, J.; Lee, Y.; Hong, J.; Lee, Y.; Ha, M.; Jung, Y.; Lim, H.; Kim, S. Y.; Ko, H. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano2014, 8, 12020–12029.

    Article  CAS  Google Scholar 

  22. Chun, S.; Choi, I. Y.; Son, W.; Bae, G. Y.; Lee, E. J.; Kwon, H.; Jung, J.; Kim, H. S.; Kim, J. K.; Park, W. A highly sensitive force sensor with fast response based on interlocked arrays of indium tin oxide nanosprings toward human tactile perception. Adv. Funct. Mater.2018, 28, 1804132.

    Article  CAS  Google Scholar 

  23. Cao, Y. D.; Li, T.; Gu, Y.; Luo, H.; Wang, S. Q.; Zhang, T. Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture. Small2018, 14, 1703902.

    Article  CAS  Google Scholar 

  24. Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. N. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot.2018, 3, eaau6914.

    Article  Google Scholar 

  25. Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature2014, 516, 222–226.

    Article  CAS  Google Scholar 

  26. Park, B.; Kim, J.; Kang, D.; Jeong, C.; Kim, K. S.; Kim, J. U.; Yoo, P. J.; Kim, T. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater.2016, 28, 8130–8137.

    Article  CAS  Google Scholar 

  27. Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable mxene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano2019, 13, 649–659.

    Article  CAS  Google Scholar 

  28. Lee, J. H.; Kim, J.; Liu, D.; Guo, F. M.; Shen, X.; Zheng, Q. B.; Jeon, S.; Kim, J. K. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater.2019, 29, 1901623.

    Article  CAS  Google Scholar 

  29. Chen, S.; Song, Y. J.; Ding, D. Y.; Ling, Z.; Xu, F. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv. Funct. Mater.2018, 28, 1802547.

    Article  CAS  Google Scholar 

  30. Lee, W. S.; Kim, D.; Park, B.; Joh, H.; Woo, H. K.; Hong, Y. K.; Kim, T.; Ha, D. H.; Oh, S. J. Multiaxial and transparent strain sensors based on synergetically reinforced and orthogonally cracked heteronanocrystal solids. Adv. Funct. Mater.2019, 29, 1806714.

    Article  CAS  Google Scholar 

  31. Miao, W. N.; Wang, D. Y.; Liu, Z. M.; Tang, J. Y.; Zhu, Z. P.; Wang, C.; Liu, H.; Wen, L.; Zheng, S.; Tian, Y. et al. Bioinspired self-healing liquid films for ultradurable electronics. ACS Nano2019, 13, 3225–3231.

    Article  CAS  Google Scholar 

  32. Matsuhisa, N.; Chen, X. D.; Bao, Z. N.; Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev.2019, 48, 2946–2966.

    Article  CAS  Google Scholar 

  33. Guo, R. S.; Yu, Y.; Zeng, J. F.; Liu, X. Q.; Zhou, X. C.; Niu, L. Y.; Gao, T. T.; Li, K.; Yang, Y.; Zhou, F. et al. Biomimicking topographic elastomeric petals (e-petals) for omnidirectional stretchable and printable electronics. Adv. Sci.2015, 2, 1400021.

    Article  CAS  Google Scholar 

  34. Wu, C. Y.; Tang, X.; Gan, L.; Li, W. F.; Zhang, J.; Wang, H.; Qin, Z. Y.; Zhang, T.; Zhou, T. T.; Huang, J. et al. High-adhesion stretchable electrode via cross-linking intensified electroless deposition on a biomimetic elastomeric micropore film. ACS Appl. Mater. Interfaces2019, 11, 20535–20544.

    Article  CAS  Google Scholar 

  35. Liu, Z. Y.; Wang, X. T.; Qi, D. P.; Xu, C.; Yu, J. C.; Liu, Y. Q.; Jiang, Y.; Liedberg, B.; Chen, X. D. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater.2017, 29, 1603382.

    Article  CAS  Google Scholar 

  36. Liu, Z. Y.; Wang, H.; Huang, P. G.; Huang, J. P.; Zhang, Y.; Wang, Y. Y.; Yu, M.; Chen, S. X.; Qi, D. P.; Wang, T. et al. Highly stable and stretchable conductive films through thermal-radiation-assisted metal encapsulation. Adv. Mater.2019, 31, 1901360.

    Article  CAS  Google Scholar 

  37. Wang, Y.; Gong, S.; Gómez, D.; Ling, Y. Z.; Yap, L. W.; Simon, G. P.; Cheng, W. L. Unconventional Janus properties of enokitake-like gold nanowire films. ACS Nano2018, 12, 8717–8722.

    Article  CAS  Google Scholar 

  38. Wang, Y.; Gong, S.; Wang, S. J.; Yang, X. Y.; Ling, Y. Z.; Yap, L. W.; Dong, D. S.; Simon, G. P.; Cheng, W. L. Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano2018, 12, 9742–9749.

    Article  CAS  Google Scholar 

  39. Zhu, B. W.; Gong, S.; Lin, F.; Wang, Y.; Ling, Y. Z.; An, T.; Cheng, W. L. Patterning vertically grown gold nanowire electrodes for intrinsically stretchable organic transistors. Adv. Electron. Mater.2019, 5, 1800509.

    Article  CAS  Google Scholar 

  40. Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M. A Review of carbon nanotube- and graphene-based flexible thin-film transistors. Small2013, 9, 1188–1205.

    Article  CAS  Google Scholar 

  41. Hong, J. Y.; Kim, W.; Choi, D.; Kong, J.; Park, H. S. Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano2016, 10, 9446–9455.

    Article  CAS  Google Scholar 

  42. Liu, N.; Chortos, A.; Lei, T.; Jin, L. H.; Kim, T. R.; Bae, W. G.; Zhu, C. X.; Wang, S. H.; Pfattner, R.; Chen, X. Y.; Sinclair, R.; Bao, Z. N. Ultratransparent and stretchable graphene electrodes. Sci. Adv.2017, 3, e1700159.

    Article  CAS  Google Scholar 

  43. Han, J.; Lee, J. Y.; Lee, J.; Yeo, J. S. Highly stretchable and reliable, transparent and conductive entangled graphene mesh networks. Adv. Mater.2018, 30, 1704626.

    Article  CAS  Google Scholar 

  44. Yan, S.; Zhang, G. Z.; Jiang, H. Y.; Li, F. B.; Zhang, L.; Xia, Y. H.; Wang, Z. S.; Wu, Y. K.; Li, H. J. Highly stretchable room-temperature self-healing conductors based on wrinkled graphene films for flexible electronics. ACS Appl. Mater. Interfaces2019, 11, 10736–10744.

    Article  CAS  Google Scholar 

  45. Sun, F. Q.; Tian, M. W.; Sun, X. T.; Xu, T. L.; Liu, X. Q.; Zhu, S. F.; Zhang, X. J.; Qu, L. J. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett.2019, 19, 6592–6599.

    Article  CAS  Google Scholar 

  46. Wang, Z. Y.; Liu, X.; Shen, X.; Han, N. M.; Wu, Y.; Zheng, Q. B.; Jia, J. J.; Wang, N.; Kim, J. K. An ultralight graphene honeycomb sandwich for stretchable light-emitting displays. Adv. Funct. Mater.2018, 28, 1707043.

    Article  CAS  Google Scholar 

  47. Poldrack, R. A.; Farah, M. J. Progress and challenges in probing the human brain. Nature2015, 526, 371–379.

    Article  CAS  Google Scholar 

  48. Kim, G. H.; Kim, K.; Lee, E.; An, T.; Choi, W.; Lim, G.; Shin, J. H. Recent progress on microelectrodes in neural interfaces. Materials2018, 11, 1995.

    Article  CAS  Google Scholar 

  49. Hong, G. S.; Yang, X.; Zhou, T.; Lieber, C. M. Mesh electronics: A new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol.2018, 50, 33–41.

    Article  CAS  Google Scholar 

  50. Im, C.; Seo, J. M. A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett.2016, 6, 104–112.

    Article  Google Scholar 

  51. Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol.2015, 10, 629–636.

    Article  CAS  Google Scholar 

  52. Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the singleneuron level. Nat. Methods2016, 13, 875–882.

    Article  CAS  Google Scholar 

  53. Yang, X.; Zhou, T.; Zwang, T. J.; Hong, G. S.; Zhao, Y. L.; Viveros, R. D.; Fu, T. M.; Gao, T.; Lieber, C. M. Bioinspired neuron-like electronics. Nat. Mater.2019, 18, 510–517.

    Article  CAS  Google Scholar 

  54. Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater.2019, 9, 1802906.

    Article  CAS  Google Scholar 

  55. Seol, M. L.; Woo, J. H.; Lee, D.; Im, H.; Hur, J.; Choi, Y. K. Nature-replicated nano-in-micro structures for triboelectric energy harvesting. Small2014, 10, 3887–3894.

    Article  CAS  Google Scholar 

  56. Bui, V. T.; Zhou, Q. T.; Kim, J. N.; Oh, J. H.; Han, K. W.; Choi, H. S.; Kim, S. W.; Oh, I. K. Treefrog toe pad-inspired micropatterning for high-power triboelectric nanogenerator. Adv. Funct. Mater.2019, 29, 1901638.

    Article  CAS  Google Scholar 

  57. Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S.; Baig, C.; Ko, H. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano2018, 12, 3964–3974.

    Article  CAS  Google Scholar 

  58. Chen, H. T.; Song, Y.; Guo, H.; Miao, L. M.; Chen, X. X.; Su, Z. M.; Zhang, H. X. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy2018, 51, 496–503.

    Article  CAS  Google Scholar 

  59. Choi, D.; Kim, D. W.; Yoo, D.; Cha, K. J.; La, M.; Kim, D. S. Spontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy2017, 36, 250–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jidong Shi from The Hong Kong Polytechnic University for helpful discussions. This work is supported by the National Natural Science Foundation of China (Nos. 21790393 and 51972073) and Frontier Research Program of the Chinese Academy of Sciences (No. XDB32030100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Lv, S. & Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 13, 1244–1252 (2020). https://doi.org/10.1007/s12274-020-2628-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2628-9

Keywords

Navigation