Skip to main content
Log in

Response of Isovalerate-Degrading Methanogenic Microbial Community to Inhibitors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Isovalerate is one of the key intermediates during anaerobic digestion treating protein-containing waste/wastewater. Investigating the effect of different kinds of inhibitors on isovalerate-degrading microbial community is necessary to develop measures for improving the effectiveness of the treatment plants. In the present study, dynamic changes in the isovalerate-degrading microbial community in presence of inhibitors (ammonium, sulfide, mixed ammonium and sulfide, and chlortetracycline (CTC)) were investigated using high-throughput sequencing of 16S rRNA gene. Our observations showed that the isovalerate-degrading microbial community responded differently to different inhibitors and that the isovalerate degradation and gas production were strongly repressed by each inhibitor. We found that sulfide inhibited both isovalerate oxidation followed by methanogenesis, while ammonium, mixed ammonium and sulfide, and CTC mainly inhibited isovalerate oxidation. Genera classified into Proteobacteria and Chloroflexi were less sensitive to inhibitors. The two dominant genera, which are potential syntrophic isovalerate oxidizers, exhibited different responses to inhibitors that the unclassified_Peptococcaceae_3 was more sensitive to inhibitors than the unclassified_Syntrophaceae. Upon comparison to acetoclastic methanogen Methanosaeta, hydrogenotrophic methanogens Methanoculleus and Methanobacterium were less sensitive to inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tian, H., Karachalios, P., Angelidaki, I., & Fotidis, I. A. (2018). A proposed mechanism for the ammonia–LCFA synergetic co-inhibition effect on anaerobic digestion process. Chemical Engineering Journal, 349, 574–580.

    Article  CAS  Google Scholar 

  2. Kamali, M., Gameiro, T., Costa, M. E. V., & Capela, I. (2016). Anaerobic digestion of pulp and paper mill wastes—an overview of the developments and improvement opportunities. Chemical Engineering Journal, 298, 162–182.

    Article  CAS  Google Scholar 

  3. Zhao, L., Dong, Y. H., & Wang, H. (2010). Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. The Science of the Total Environment, 408(5), 1069–1075.

    Article  CAS  Google Scholar 

  4. Wang, H. Z., Yan, Y. C., Gou, M., Yi, Y., Xia, Z. Y., Nobu, M. K., Narihiro, T., & Tang, Y. Q. (2019). Response of propionate-degrading methanogenic microbial communities to inhibitory conditions. Applied Biochemistry and Biotechnology, 189(1), 233–248.

    Article  CAS  Google Scholar 

  5. Zhang, C., Yuan, Q., & Lu, Y. (2018). Inhibitory effects of ammonia on syntrophic propionate oxidation in anaerobic digester sludge. Water Research, 146, 275–287.

    Article  CAS  Google Scholar 

  6. Yang, Z., Wang, W., He, Y., Zhang, R., & Liu, G. (2018). Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions. Renewable Energy, 125, 915–925.

    Article  CAS  Google Scholar 

  7. Lü, F., Hao, L., Guan, D., Qi, Y., Shao, L., & He, P. (2013). Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics. Water Research, 47(7), 2297–2306.

    Article  Google Scholar 

  8. Karakashev, D., Batstone, D. J., & Angelidaki, I. (2005). Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Applied and Environmental Microbiology, 71(1), 331–338.

    Article  CAS  Google Scholar 

  9. Koster, I. W., & Lettinga, G. (1984). The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge. Agricultural Wastes, 9, 205–216.

    Article  CAS  Google Scholar 

  10. Westerholm, M., Levén, L., & Schnürer, A. (2012). Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Applied and Environmental Microbiology, 78(21), 7619–7625.

    Article  CAS  Google Scholar 

  11. Angelidaki, I., & Ahring, B. K. (1993). Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Applied Microbiology and Biotechnology, 38, 560–564.

    Article  CAS  Google Scholar 

  12. Chen, S., He, J., Wang, H., Dong, B., Li, N., & Dai, X. (2018). Microbial responses and metabolic pathways reveal the recovery mechanism of an anaerobic digestion system subjected to progressive inhibition by ammonia. Chemical Engineering Journal, 350, 312–323.

    Article  CAS  Google Scholar 

  13. Turker, G., Aydin, S., Akyol, Ç., Yenigun, O., Ince, O., & Ince, B. (2016). Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure. Applied Microbiology and Biotechnology, 100(14), 6469–6479.

    Article  CAS  Google Scholar 

  14. Deng, Y., Zhang, Y., Gao, Y., Li, D., Liu, R., Liu, M., Zhang, H., Hu, B., Yu, T., & Yang, M. (2012). Microbial community compositional analysis for series reactors treating high level antibiotic wastewater. Environmental Science & Technology, 46(2), 795–801.

    Article  CAS  Google Scholar 

  15. Pind, P. F., Angelidaki, I., & Ahring, B. K. (2003). Dynamics of the anaerobic process: effects of volatile fatty acids. Biotechnology and Bioengineering, 82(7), 791–801.

    Article  CAS  Google Scholar 

  16. Müller, N., Worm, P., Schink, B., Stams, A. J. M., & Plugge, C. M. (2010). Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environmental Microbiology Reports, 2(4), 489–499.

    Article  Google Scholar 

  17. Amani, T., Nosrati, M., Mousavi, S. M., & Kermanshahi, R. K. (2011). Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. International journal of Environmental Science and Technology, 8, 83–96.

    Article  CAS  Google Scholar 

  18. Batstone, D. J., Pind, P. F., & Angelidaki, I. (2003). Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnology and Bioengineering, 84(2), 195–204.

    Article  CAS  Google Scholar 

  19. Stieb, M., & Schink, B. (1986). Anaerobic degradation of isovalerate by a defined methanogenic coculture. Archives of Microbiology, 144, 291–295.

    Article  CAS  Google Scholar 

  20. Narihiro, T., Nobu, M. K., Tamaki, H., Kamagata, Y., Sekiguchi, Y., & Liu, W. T. (2016). Comparative genomics of syntrophic branched-chain fatty acid degrading bacteria. Microbes and Environments, 31(3), 288–292.

    Article  Google Scholar 

  21. Nobu, M. K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S. G., Woyke, T., & Liu, W. T. (2015). Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. The ISME Journal, 9(8), 1710–1722.

    Article  Google Scholar 

  22. Shigematsu, T., Tang, Y. Q., Kawaguchi, H., Ninomiya, K., Kijima, J., Kobayashi, T., Morimura, S., & Kida, K. (2003). Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. Journal of Bioscience and Bioengineering, 96(6), 547–558.

    Article  CAS  Google Scholar 

  23. Jiang, X., Hayashi, J., Sun, Z. Y., Yang, L., Tang, Y. Q., Oshibe, H., Osaka, N., & Kida, K. (2013). Improving biogas production from protein-rich distillery wastewater by decreasing ammonia inhibition. Process Biochemistry, 48, 1778–1784.

    Article  CAS  Google Scholar 

  24. Griffiths, R. I., Whiteley, A. S., Donnell, A. G., & Bailey, M. J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66(12), 5488–5491.

    Article  CAS  Google Scholar 

  25. Dan, X., Chen, H., Chen, F., He, Y., Zhao, C., Zhu, D., Zeng, L., & Li, W. (2016). Analysis of the rumen bacteria and methanogenic archaea of yak (Bos grunniens) steers grazing on the Qinghai–Tibetan plateau. Livestock Science, 188, 61–71.

    Article  Google Scholar 

  26. Zheng, D., Wang, H. Z., Gou, M., Nobu, M. K., Narihiro, T., Hu, B., Nie, Y., & Tang, Y. Q. (2019). Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing. Applied Microbiology and Biotechnology, 103(20), 8631–8645.

    Article  CAS  Google Scholar 

  27. Greetham, D., Hart, A. J., & Tucker, G. A. (2016). Presence of low concentrations of acetic acid improves yeast tolerance to hydroxymethylfurfural (HMF) and furfural. Biomass and Bioenergy, 85, 53–60.

    Article  CAS  Google Scholar 

  28. Dörries, M., Wöhlbrand, L., Kube, M., Reinhardt, R., & Rabus, R. (2016). Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059. BMC Genomics, 17, 918.

    Article  Google Scholar 

  29. Zheng, D., & Raskin, L. (2000). Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes. Microbial Ecology, 39(3), 246–262.

    CAS  PubMed  Google Scholar 

  30. Tan, L., Cheng, Q. S., Sun, Z. Y., Tang, Y. Q., & Kida, K. (2019). Effects of ammonium and/or sulfide on methane production from acetate or propionate using biochemical methane potential tests. Journal of Bioscience and Bioengineering, 127(3), 345–352.

    Article  CAS  Google Scholar 

  31. Torres, N. P., Lee, A. Y., Giaever, G., Nislow, C., & Brown, G. W. (2013). A high-throughput yeast assay identifies synergistic drug combinations. Assay and Drug Development Technologies, 11(5), 299–307.

    Article  CAS  Google Scholar 

  32. Stone, J. J., Clay, S. A., Zhu, Z., Wong, K. L., Porath, L. R., & Spellman, G. M. (2009). Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion. Water Research, 43(18), 4740–4750.

    Article  CAS  Google Scholar 

  33. Yin, F., Dong, H., Ji, C., Tao, X., & Chen, Y. (2016). Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure. Waste Management, 56, 540–546.

    Article  CAS  Google Scholar 

  34. Akyol, Ç., Aydin, S., Ince, O., & Ince, B. (2016). A comprehensive microbial insight into single-stage and two-stage anaerobic digestion of oxytetracycline-medicated cattle manure. Chemical Engineering Journal, 303, 675–684.

    Article  CAS  Google Scholar 

  35. Lu, Y., Liaquat, R., Astals, S., Jensen, P. D., Batstone, D. J., & Tait, S. (2018). Relationship between microbial community, operational factors and ammonia inhibition resilience in anaerobic digesters at low and moderate ammonia background concentrations. New Biotechnology, 44, 23–30.

    Article  CAS  Google Scholar 

  36. Aydin, S., Ince, B., & Ince, O. (2015). Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors. Water Research, 76, 88–98.

    Article  CAS  Google Scholar 

  37. Cheng, D. L., Ngo, H. H., Guo, W. S., Chang, S. W., Nguyen, D. D., Kumar, S. M., Du, B., Wei, Q., & Wei, D. (2018). Problematic effects of antibiotics on anaerobic treatment of swine wastewater. Bioresource Technology, 263, 642–653.

    Article  CAS  Google Scholar 

  38. Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2011). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343–351.

    Article  Google Scholar 

  39. Yoon, K. S., Tsukada, N., Sakai, Y., Ishii, M., Igarashi, Y., & Nishihara, H. (2008). Isolation and characterization of a new facultatively autotrophic hydrogen-oxidizing Betaproteobacterium, Hydrogenophaga sp. AH-24. FEMS Microbiology Letters, 278, 94–100.

    Article  CAS  Google Scholar 

  40. Tian, Z., Zhang, Y., & Yang, M. (2018). Chronic impacts of oxytetracycline on mesophilic anaerobic digestion of excess sludge: inhibition of hydrolytic acidification and enrichment of antibiotic resistome. Environmental Pollution, 238, 1017–1026.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (No. 2016YFE0127700) and the National Natural Science Foundation of China (No. 51678378).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Ting Chen or Yue-Qin Tang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, HZ., Yi, Y. et al. Response of Isovalerate-Degrading Methanogenic Microbial Community to Inhibitors. Appl Biochem Biotechnol 191, 1010–1026 (2020). https://doi.org/10.1007/s12010-020-03234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03234-9

Keywords

Navigation