Skip to main content
Log in

Arsenic Sorption on Chitosan-Based Sorbents: Comparison of the Effect of Molybdate and Tungstate Loading on As(V) Sorption Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Modified chitosan gel beads, prepared by molybdate and tungstate coagulation methods, were tested for As(V) removal from solutions in the range of 5–200 mg As L−1. The sorbent is efficient at removing As(V) from acid solutions (optimum pH close to 3), the sorption capacities for As uptake in molybdate- and tungstate-loaded beads are 75 and 44 mg As g−1 of dry mass, respectively. The mechanism of As(V) sorption is related to the ability of molybdate and tungstate ions to complex As(V) ions in acid solutions. As(V) sorption process is mainly influenced by the presence of phosphate ions, but there is no influence of co-ions as nitrate and chloride. Arsenic desorption can be performed using phosphoric acid solutions. Arsenic adsorption proceeds in acidic solutions with a partial release of molybdate and tungstate and with residual concentrations of arsenic above the regulations for drinking water. For that reason, this material is a candidate for the treatment of industrial effluents.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mohan D, Pittman C Jr (2007) J Hazard Mater 142:1–53

    Article  CAS  PubMed  Google Scholar 

  2. Navarro O, González J, Júnez-Ferreira H, Bautista C-F, Cardona A (2017) Procedia Eng 186:333–340

    Article  CAS  Google Scholar 

  3. Missimer TM, Teaf CM, Beeson WT, Maliva RG, Woolschlager J, Covert DJ (2018) Int J Environ Res Public Health 15:1–30

    Article  CAS  Google Scholar 

  4. Rahman M, Rahman A, Kaiser Khan M, Renzaho AM (2018) Ecotoxicol Environ Saf 150:335–343

    Article  CAS  PubMed  Google Scholar 

  5. Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Sci Total Environ 612:148–169

    Article  CAS  PubMed  Google Scholar 

  6. Kwok K, Koong LF, Chen G, McKay G (2014) J Colloid Interface Sci 416:1–10

    Article  CAS  PubMed  Google Scholar 

  7. Guibal E (2004) Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  8. Kumar AS, Jiang SJ (2016) J Environ Chem Eng 4:1698–1713

    Article  CAS  Google Scholar 

  9. Ngah W, Endud C, Mayanar R (2002) React. Funct. Polym 50:181–190

    Article  CAS  Google Scholar 

  10. Pang M, Kano N, Imaizumi H (2015) J Chem Chem Eng 9:433–441

    CAS  Google Scholar 

  11. Beheshti H, Irani M, Hosseini L, Rahimi A, Aliabadi M (2016) Chem Eng J 284:557–564

    Article  CAS  Google Scholar 

  12. Wang Y, Li L, Luoa C, Wanga X, Duan H (2016) Int J Biol Macromol 86:505–511

    Article  CAS  PubMed  Google Scholar 

  13. Dambies L, Guibal E, Roze A (2000) Colloids Surf A 170:19–31

    Article  CAS  Google Scholar 

  14. Dambies L, Vincent T, Guibal E (2002) Water Res 36:3699–3710

    Article  CAS  PubMed  Google Scholar 

  15. Gibert F, Moine B, Schott J, Dandurand JL (1992) Contrib Mineral Petrol 112:371–384

    Article  CAS  Google Scholar 

  16. Rinaudo M (2006) Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  17. Kasaai MR (2007) Carbohydr Polym 68:477–488

    Article  CAS  Google Scholar 

  18. Brunauer S, Emmett P, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  19. Basha CA, Selvi SJ, Ramasamy E, Chellammal S (2008) Chem Eng J 141:89–98

    Article  CAS  Google Scholar 

  20. Dziubek J (2017) Web conf 17:1–8

    Article  CAS  Google Scholar 

  21. Dambies L, Vincent T, Domard A, Guibal E (2001) Biomacromol 2:1454–1463

    Article  CAS  Google Scholar 

  22. Gustafsson JP (2003) Chem Geol 200:105–115

    Article  CAS  Google Scholar 

  23. Xu N, Christodoulatos C, Braida W (2006) Chemosphere 64:1325–1333

    Article  CAS  PubMed  Google Scholar 

  24. Koutsospyros A, Braida W, Christodoulatos C, Dermatas D, Strigul N (2006) J Hazard Mater 136:1–19

    Article  CAS  PubMed  Google Scholar 

  25. Rakshit S, Sallman B, Davantés A, Lefèvre G (2017) Chemosphere 168:685–691

    Article  CAS  PubMed  Google Scholar 

  26. Gecol H, Miakatsindila P, Ergican E, Hiibel SR (2006) Desalination 197:165–178

    Article  CAS  Google Scholar 

  27. Rietra RP, Hiemstra T, van Riemsdijk WH (1999) Geochim Cosmochim Acta 63:3009–3015

    Article  CAS  Google Scholar 

  28. Qian L, Zhang H (2011) J Chem Technol Biotechnol 86:172–184

    Article  CAS  Google Scholar 

  29. Rahman I, Vejayakumaran P, Sipaut C, Ismail J, Chee C (2008) Ceram Int 2059:2066

    Google Scholar 

  30. Di Renzo F, Valentin R, Boissiere M, Tourrette A, Sparapano G, Molvinger K (2005) … Quignard F. Chem Mater 17:4693–4699

    Article  CAS  Google Scholar 

  31. Robitzer M, Di Renzo F, Quignard F (2011) Microporous Mesoporous Mater 140:9–16

    Article  CAS  Google Scholar 

  32. Klobes P, Meyer K, Munro RG (2006) In: Specific Surface Area and Pore Analysis by Gas Adsorption (ed), US Government printing office, Washington DC, p 23–24

  33. Instruments Q (2015) Powder Tech 51:51

    Google Scholar 

  34. Pawlak A, Mucha M (2003) Thermochim Acta 396:153–166

    Article  CAS  Google Scholar 

  35. Fernandes Queiroz M, Teodosio Melo KR, Araujo Sabry D, Lanzi Sassaki G, Oliveira Rocha HA (2015) Mar Drugs 13:141–158

    Article  CAS  Google Scholar 

  36. Tuchowska M, Muir B, Kowalik M, Socha RP, Bajda T (2019) Materials 12:2253

    Article  CAS  PubMed Central  Google Scholar 

  37. Guibal E, Milot C, Eterradossi O, Gauffier C, Domard A (1999) Int J Biol Macromol 24:49–59

    Article  CAS  PubMed  Google Scholar 

  38. Severo E, Rossi Abaide E, Gonçalves Anchieta C, Segabinazzi Foletto V, Trevisan Weber C, Bisognin Garlet T, Foletto E (2016) Mater Res 19:781–785

    Article  CAS  Google Scholar 

  39. Bertoni FA, González JC, García SI, Sala LF, Bellú SE (2018) Carbohydr Polym 180:55–62

    Article  CAS  PubMed  Google Scholar 

  40. Das J, Sarkar P (2016) Environ Sci-Wat Res 2:693–704

    CAS  Google Scholar 

  41. Alekseev EV, Felbinger O, Wu S, Malcherek T, Depmeier W, Atuchin VV (2013) J Solid State Chem 204:59–63

    Article  CAS  Google Scholar 

  42. Chiban M, Zerbet M, Carja G, Sinan F (2012) J Environ Chem Ecotoxicol 4:91–102

    Google Scholar 

  43. Taylor JB, Calvert D, Hun IR (1965) Can J Chem 43:3045–3051

    Article  CAS  Google Scholar 

  44. Girma Asere T, Mincke S, Jeriffa DC, Verbeken K, Tessema D, Fufa F (2017) … Du Laing G. Int J Environ Res Public Health 14:1–19

    Google Scholar 

  45. Pontoni L, Fabbricino M (2012) Carbohydr Res 356:86–92

    Article  CAS  PubMed  Google Scholar 

  46. Wan Ngah W, Fatinathan S (2008) Chem Eng J 143:62–72

    Article  CAS  Google Scholar 

  47. Ayawei N, Ebelegi A, Wankasi D (2017) J Chem 2017:1–11

    Article  CAS  Google Scholar 

  48. ZabihiSahebi A, Koushkbaghi S, Pishnamazi M, Askari A, Khosravi R, Irani M (2019) Int J Biol Macromol 140:1296–1304

    Article  CAS  PubMed  Google Scholar 

  49. Nisticò R, Celi LR, Bianco Prevot A, Carlos L, Magnacca G, Zanzo E, Martin M (2018) J Hazard Mater 342:260–269

    Article  CAS  PubMed  Google Scholar 

  50. Abou El-Reash YG, Otto M, Kenawy IM, Ouf AM (2011) Int J Biol Macromol 49:513–522

    Article  CAS  PubMed  Google Scholar 

  51. Ruiz M, Sastre A, Guibal E (2002) Sep Sci Technol 37:2143–2166

    Article  CAS  Google Scholar 

  52. Chiou M, Li H (2003) Chemosphere 50:1095–1105

    Article  CAS  PubMed  Google Scholar 

  53. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Water Res 120:88–116

    Article  CAS  PubMed  Google Scholar 

  54. Qi J, Zhang G, Li H (2015) Bioresour Technol 193:243–249

    Article  CAS  PubMed  Google Scholar 

  55. Elwakeel KZ, Guibal E (2015) Carbohydr Polym 134:190–204

    Article  CAS  PubMed  Google Scholar 

  56. De Marques Neto JO, Bellato CR, Milagres JL, Pessoa KD, De Alvarenga ES (2013) J Braz Chem Soc 24:121–132

    Article  CAS  Google Scholar 

  57. Gupta A, Chauhan V, Sankararamakrishnan N (2009) Water Res 43:3862–3870

    Article  CAS  PubMed  Google Scholar 

  58. Zeng H, Yu Y, Wang F, Zhang J, Li D (2020) Colloids Surf A 585:124036

  59. Tajuddin Sikder M, Tanaka S, Saito T, Kurasaki M (2014) J Environ Chem Eng 2:370–376

    Article  CAS  Google Scholar 

  60. He J, Bardelli F, Gehin A, Silvester E, Charlet L (2016) Water Res 101:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

National Council for Science and Technology—CONACYT. Scholarship # 401226 and scholarship as visiting research student at Ecole des Mines d´Alès, France. We want to thank Prof. Fierro-González for helping with specific surface area analysis, Prof. Almendárez-Camarillo for helping with SEM images, and Prof. Galindo-Vallarino for assistance with FTIR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Louvier-Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sierra-Trejo, P.V., Guibal, E. & Louvier-Hernández, J.F. Arsenic Sorption on Chitosan-Based Sorbents: Comparison of the Effect of Molybdate and Tungstate Loading on As(V) Sorption Properties. J Polym Environ 28, 934–947 (2020). https://doi.org/10.1007/s10924-020-01654-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01654-6

Keywords

Navigation