Skip to main content

Advertisement

Log in

Treatment of hyperphosphatemia: the dangers of aiming for normal PTH levels

  • Pro/Con Debate
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Secondary hyperparathyroidism is part of the complex of chronic kidney disease-associated mineral and bone disorders (CKD-MBD) and is linked with high bone turnover, ectopic calcification, and increased cardiovascular mortality. Therefore, measures for CKD-MBD aim at lowering PTH levels, but there is no general consensus on optimal PTH target values. This manuscript is part of a pros and cons debate for keeping PTH levels within the normal range in children with CKD, focusing on the cons. We conclude that a modest increase in PTH most likely represents an appropriate adaptive response to declining kidney function in patients with CKD stages 2–5D, due to phosphaturic effects and increasing bone resistance. There is no evidence for strictly keeping PTH levels within the normal range in CKD patients with respect to bone health and cardiovascular outcome. In addition, the potentially adverse effects of PTH-lowering measures, such as active vitamin D and calcimimetics, must be taken into account. We suggest that PTH values of 1–2 times the upper normal limit (ULN) may be acceptable in children with CKD stage 2–3, and that PTH levels of 1.7–5 times UNL may be optimal in patients with CKD stage 4–5D. However, standard care of CKD-MBD in children relies on a combination of different measures in which the observation of PTH levels is only a small part of, and trends in PTH levels rather than absolute target values should determine treatment decisions in patients with CKD as recommended by the 2017 KDIGO guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G, Kidney Disease: Improving Global Outcomes (KDIGO) (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69:1945–1953

    Article  CAS  PubMed  Google Scholar 

  2. Hu MC, Shiizaki K, Kuro-o M, Moe OW (2013) Fibroblast growth factor 23 and klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 75:503–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Portale AA, Wolf M, Juppner H, Messinger S, Kumar J, Wesseling-Perry K, Schwartz GJ, Furth SL, Warady BA, Salusky IB (2014) Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol 9:344–353

    Article  CAS  PubMed  Google Scholar 

  4. Hruska KA, Seifert M, Sugatani T (2015) Pathophysiology of the chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens 24:303–309

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakkaloglu SA, Borzych D, Soo Ha I, Serdaroglu E, Buscher R, Salas P, Patel H, Drozdz D, Vondrak K, Watanabe A, Villagra J, Yavascan O, Valenzuela M, Gipson D, Ng KH, Warady BA, Schaefer F, International Pediatric Peritoneal Dialysis Network (2011) Cardiac geometry in children receiving chronic peritoneal dialysis: findings from the international pediatric peritoneal dialysis network (IPPN) registry. Clin J Am Soc Nephrol 6:1926–1933

    Article  PubMed  PubMed Central  Google Scholar 

  6. Borzych D, Rees L, Ha IS, Chua A, Valles PG, Lipka M, Zambrano P, Ahlenstiel T, Bakkaloglu SA, Spizzirri AP, Lopez L, Ozaltin F, Printza N, Hari P, Klaus G, Bak M, Vogel A, Ariceta G, Yap HK, Warady BA, Schaefer F, International Pediatric PD Network (IPPN) (2010) The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int 78:1295–1304

    Article  PubMed  Google Scholar 

  7. Salusky IB, Ramirez JA, Oppenheim W, Gales B, Segre GV, Goodman WG (1994) Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int 45:253–258

    Article  CAS  PubMed  Google Scholar 

  8. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483

    Article  CAS  PubMed  Google Scholar 

  9. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Article  PubMed  Google Scholar 

  10. Kalantar-Zadeh K, Kuwae N, Regidor DL, Kovesdy CP, Kilpatrick RD, Shinaberger CS, McAllister CJ, Budoff MJ, Salusky IB, Kopple JD (2006) Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 70:771–780

    Article  CAS  PubMed  Google Scholar 

  11. Denburg MR, Kumar J, Jemielita T, Brooks ER, Skversky A, Portale AA, Salusky IB, Warady BA, Furth SL, Leonard MB (2016) Fracture burden and risk factors in childhood CKD: results from the CKiD cohort study. J Am Soc Nephrol 27:543–550

    Article  CAS  PubMed  Google Scholar 

  12. KDOQI Work Group (2009) KDOQI clinical practice guideline for nutrition in children with CKD: 2008 update. executive summary. Am J Kidney Dis 53:S11–S104

  13. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 113:S1–S130

  14. Klaus G, Watson A, Edefonti A, Fischbach M, Ronnholm K, Schaefer F, Simkova E, Stefanidis CJ, Strazdins V, Vande Walle J, Schroder C, Zurowska A, Ekim M, European Pediatric Dialysis Working Group (EPDWG) (2006) Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol 21:151–159

    Article  CAS  PubMed  Google Scholar 

  15. Haffner D, Schaefer F (2013) Searching the optimal PTH target range in children undergoing peritoneal dialysis: new insights from international cohort studies. Pediatr Nephrol 28:537–545

    Article  PubMed  Google Scholar 

  16. Rees L (2008) What parathyroid hormone levels should we aim for in children with stage 5 chronic kidney disease; what is the evidence? Pediatr Nephrol 23:179–184

    Article  PubMed  Google Scholar 

  17. Norman ME, Mazur AT, Borden S, Gruskin A, Anast C, Baron R, Rasmussen H (1980) Early diagnosis of juvenile renal osteodystrophy. J Pediatr 97:226–232

    Article  CAS  PubMed  Google Scholar 

  18. Bakkaloglu SA, Wesseling-Perry K, Pereira RC, Gales B, Wang HJ, Elashoff RM, Salusky IB (2010) Value of the new bone classification system in pediatric renal osteodystrophy. Clin J Am Soc Nephrol 5:1860–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pereira RC, Bischoff DS, Yamaguchi D, Salusky IB, Wesseling-Perry K (2016) Micro-CT in the assessment of pediatric renal osteodystrophy by bone histomorphometry. Clin J Am Soc Nephrol 11:481–487

    Article  CAS  PubMed  Google Scholar 

  20. Shroff R (2013) Phosphate is a vascular toxin. Pediatr Nephrol 28:583–593

    Article  PubMed  Google Scholar 

  21. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, Ellins EA, Storry C, Ridout D, Deanfield J, Rees L (2007) Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol 18:2996–3003

    Article  CAS  PubMed  Google Scholar 

  22. Civilibal M, Caliskan S, Adaletli I, Oflaz H, Sever L, Candan C, Canpolat N, Kasapcopur O, Kuruoglu S, Arisoy N (2006) Coronary artery calcifications in children with end-stage renal disease. Pediatr Nephrol 21:1426–1433

    Article  PubMed  Google Scholar 

  23. Briese S, Wiesner S, Will JC, Lembcke A, Opgen-Rhein B, Nissel R, Wernecke KD, Andreae J, Haffner D, Querfeld U (2006) Arterial and cardiac disease in young adults with childhood-onset end-stage renal disease-impact of calcium and vitamin D therapy. Nephrol Dial Transplant 21:1906–1914

    Article  CAS  PubMed  Google Scholar 

  24. Groothoff JW, Gruppen MP, Offringa M, de Groot E, Stok W, Bos WJ, Davin JC, Lilien MR, Van de Kar NC, Wolff ED, Heymans HS (2002) Increased arterial stiffness in young adults with end-stage renal disease since childhood. J Am Soc Nephrol 13:2953–2961

    Article  PubMed  Google Scholar 

  25. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2005) Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol 16:2796–2803

    Article  CAS  PubMed  Google Scholar 

  26. Block GA, Hulbert-Shearon TE, Levin NW, Port FK (1998) Association of serum phosphorus and calcium × phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31:607–617

    Article  CAS  PubMed  Google Scholar 

  27. Voormolen N, Noordzij M, Grootendorst DC, Beetz I, Sijpkens YW, van Manen JG, Boeschoten EW, Huisman RM, Krediet RT, Dekker FW, PREPARE study group (2007) High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol Dial Transplant 22:2909–2916

    Article  CAS  PubMed  Google Scholar 

  28. Evenepoel P, Bover J, Urena Torres P (2016) Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int 90:1184–1190

    Article  CAS  PubMed  Google Scholar 

  29. Wesseling-Perry K, Harkins GC, Wang HJ, Elashoff R, Gales B, Horwitz MJ, Stewart AF, Juppner H, Salusky IB (2010) The calcemic response to continuous parathyroid hormone (PTH)(1-34) infusion in end-stage kidney disease varies according to bone turnover: a potential role for PTH(7-84). J Clin Endocrinol Metab 95:2772–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hocher B, Armbruster FP, Stoeva S, Reichetzeder C, Gron HJ, Lieker I, Khadzhynov D, Slowinski T, Roth HJ (2012) Measuring parathyroid hormone (PTH) in patients with oxidative stress—do we need a fourth generation parathyroid hormone assay? PLoS One 7:e40242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hruska KA, Korkor A, Martin K, Slatopolsky E (1981) Peripheral metabolism of intact parathyroid hormone. Role of liver and kidney and the effect of chronic renal failure. J Clin Invest 67:885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vervloet MG, Brandenburg VM, CKD-MBD working group of ERA-EDTA (2017) Circulating markers of bone turnover. J Nephrol 30:663–670

    Article  PubMed  PubMed Central  Google Scholar 

  33. London GM, Marchais SJ, Guerin AP, de Vernejoul MC (2015) Ankle-brachial index and bone turnover in patients on dialysis. J Am Soc Nephrol 26:476–483

    Article  PubMed  CAS  Google Scholar 

  34. Schmitt CP, Ardissino G, Testa S, Claris-Appiani A, Mehls O (2003) Growth in children with chronic renal failure on intermittent versus daily calcitriol. Pediatr Nephrol 18:440–444

    Article  PubMed  Google Scholar 

  35. Cansick J, Waller S, Ridout D, Rees L (2007) Growth and PTH in prepubertal children on long-term dialysis. Pediatr Nephrol 22:1349–1354

    Article  PubMed  Google Scholar 

  36. Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, D'Haese PC, Drueke TB, Du H, Manley T, Rojas E, Moe SM (2016) Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 67:559–566

    Article  PubMed  Google Scholar 

  37. Diamond T, Elder GJ (2017) Is there a practical role for bone biopsy in chronic kidney disease? Nephrology (Carlton) 22(Suppl 2):22–26

    Article  CAS  Google Scholar 

  38. Lalayiannis AD, Crabtree NJ, Fewtrell M, Biassoni L, Milford DV, Ferro CJ, Shroff R (2019) Assessing bone mineralisation in children with chronic kidney disease: what clinical and research tools are available? Pediatr Nephrol. https://doi.org/10.1007/s00467-019-04271-1

  39. Sanchis P, Ho CY, Liu Y, Beltran LE, Ahmad S, Jacob AP, Furmanik M, Laycock J, Long DA, Shroff R, Shanahan CM (2019) Arterial "inflammaging" drives vascular calcification in children on dialysis. Kidney Int 95:958–972

    Article  PubMed  PubMed Central  Google Scholar 

  40. Querfeld U, Schaefer F (2018) Cardiovascular risk factors in children on dialysis: an update. Pediatr Nephrol. https://doi.org/10.1007/s00467-018-4125-x

  41. Block GA, Kilpatrick RD, Lowe KA, Wang W, Danese MD (2013) CKD-mineral and bone disorder and risk of death and cardiovascular hospitalization in patients on hemodialysis. Clin J Am Soc Nephrol 8:2132–2140

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet MG, Leonard MB (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what's changed and why it matters. Kidney Int 92:26–36

    Article  PubMed  Google Scholar 

  43. Wang AY, Fang F, Chan J, Wen YY, Qing S, Chan IH, Lo G, Lai KN, Lo WK, Lam CW, Yu CM (2014) Effect of paricalcitol on left ventricular mass and function in CKD—the OPERA trial. J Am Soc Nephrol 25:175–186

    Article  CAS  PubMed  Google Scholar 

  44. Thadhani R, Appelbaum E, Pritchett Y, Chang Y, Wenger J, Tamez H, Bhan I, Agarwal R, Zoccali C, Wanner C, Lloyd-Jones D, Cannata J, Thompson BT, Andress D, Zhang W, Packham D, Singh B, Zehnder D, Shah A, Pachika A, Manning WJ, Solomon SD (2012) Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: The PRIMO randomized controlled trial. JAMA 307:674–684

    Article  CAS  PubMed  Google Scholar 

  45. Trial Investigators EVOLVE, Chertow GM, Block GA, Correa-Rotter R, Drueke TB, Floege J, Goodman WG, Herzog CA, Kubo Y, London GM, Mahaffey KW, Mix TC, Moe SM, Trotman ML, Wheeler DC, Parfrey PS (2012) Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 367:2482–2494

    Article  Google Scholar 

  46. Haffner D, Leifheit-Nestler M (2017) Extrarenal effects of FGF23. Pediatr Nephrol 32:753–765

    Article  PubMed  Google Scholar 

  47. Haffner D, Hocher B, Muller D, Simon K, Konig K, Richter CM, Eggert B, Schwarz J, Godes M, Nissel R, Querfeld U (2005) Systemic cardiovascular disease in uremic rats induced by 1,25(OH)2D3. J Hypertens 23:1067–1075

    Article  CAS  PubMed  Google Scholar 

  48. Warady BA, Iles JN, Ariceta G, Dehmel B, Hidalgo G, Jiang X, Laskin B, Shahinfar S, Vande Walle J, Schaefer F (2019) A randomized, double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet in pediatric patients with chronic kidney disease and secondary hyperparathyroidism receiving dialysis. Pediatr Nephrol 34:475–486

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Haffner.

Ethics declarations

Conflict of interest

DH and MLN received a research grant from Amgen. DH received consultant fees from Amgen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haffner, D., Leifheit-Nestler, M. Treatment of hyperphosphatemia: the dangers of aiming for normal PTH levels. Pediatr Nephrol 35, 485–491 (2020). https://doi.org/10.1007/s00467-019-04399-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-019-04399-0

Keywords

Navigation