Skip to main content
Log in

Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: effect of dopant concentration, kinetics, and mechanism

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The 4-nitrophenol (4-NP) is one of the carcinogenic pollutants listed by US EPA and has been detected in industrial wastewater. This study investigates the photocatalytic degradation of 4-NP with TiO2 and boron (B)-doped TiO2 nanostructures. The degradation on undoped and B-doped TiO2 with various boron loadings (1–7%) was studied to establish a relationship between structure, interface, and photo-catalytic properties. The results of XRD, micro Raman, FTIR, and HRTEM show that the B doping has improved the crystallinity and induces rutile phase along with anatase (major phase). The N2 adsorption-desorption, SEM-EDX, and XPS indicated that the B induced the formation of mesoporous nanostructures in TiO2 and occupies interstitial sites by forming Ti-O-B type linkage. The surface area of pure TiO2 was decreased from 235.4 to 63.3 m2/g in B-TiO2. The photo-physical properties were characterized by UV-Vis DRS, which showed decrease in the optical band-gap of pure TiO2 (2.98 eV) to B-TiO2 (2.95 eV). The degradation results demonstrated that the B doping improved the photocatalytic activity of TiO2; however, this improvement depends on the B concentration in doped TiO2. B-doped TiO2 (> 5% B) showed 90 % degradation of 4-NP, whereas the undoped TiO2 can degrade only 79 % of 4-NP. The degradation followed pseudo-first-order kinetics with rate constant values of 0.006 min-1 and 0.0322 min-1 for pure TiO2 and B-TiO2 respectively. The existence of a reduced form of Ti3+ on the surface of TiO2 (as evidence from XPS) was found responsible for enhancement in photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  • Achamo T, Yadav OP (2016) Removal of 4-nitrophenol from water using Ag–N–P tridoped TiO2 by photocatalytic oxidation technique. Anal Chem Insights 11:29–34

    Article  CAS  Google Scholar 

  • Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM (2017a) Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr Polym 173:676–689

    Article  CAS  Google Scholar 

  • Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM (2017b) Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. Chemosphere 188:588–598

    Article  CAS  Google Scholar 

  • Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Bakhsh EM, Asiri AM, Sobahi TRA (2018) Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr Polym 192:217–230

    Article  CAS  Google Scholar 

  • Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Use of visible light second-generation TiO2 photocatalysts quantization effects and reaction intermediates. J Phys Chem 91:4305–4310

    Article  CAS  Google Scholar 

  • Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6(3):3531–3555

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  • Chen DM, Yang D, Wang Q, Jiang ZY (2006) Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res 45:4110–4116

    Article  CAS  Google Scholar 

  • Chen XQ, Zhang XW, Lei LC (2011) Electronic structures and photocatalysis properties under visible irradiation of F-doped TiO2 nanotube arrays. J Inorg Mater 26:369–374

    Article  CAS  Google Scholar 

  • Chio W, Termin A, Hoffman MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  • Di Paola A, Augugliaro V, Palmisano L, Pantaleo G, Savinov E (2003) Heterogeneous photocatalytic degradation of nitrophenols. J Photochem Photobiol A Chem 155:207–214

    Article  Google Scholar 

  • Edgar M, Elisa L, Claudia AA, Raúl AL, Carlos M (2012) Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism. JHazard Mater 243:130–138

    Article  CAS  Google Scholar 

  • Ellappan P, Miranda L, Synthesis R (2014) Characterization of cerium doped titanium catalyst for the degradation of nitrobenzene using visible light. Inter J Photoenergy 756408, 9 pages

  • Fakhri A, Behrouz S (2015a) Assessment of SnS2 nanoparticles properties for photocatalytic and antibacterial applications. Sol Energy 117:187–191

    Article  CAS  Google Scholar 

  • Fakhri A, Behrouz S (2015b) Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of lidocaine under visible and sunlight irradiation. Sol Energy 112:163–168

    Article  CAS  Google Scholar 

  • Fakhri A, Kahi DS (2017) Synthesis and characterization of MnS2/reduced graphene oxide nanohybrids for with photocatalytic and antibacterial activity. J Photochem Photobiol B Biol 166:259–263

    Article  CAS  Google Scholar 

  • Fakhri A, Khakpour R (2015) Synthesis and characterization of carbon or/and boron-doped CdS nanoparticles and investigation of optical and photoluminescence properties. J Lumin 160:233–237

    Article  CAS  Google Scholar 

  • Fakhri A, Naji M (2017) Degradation photocatalysis of tetrodotoxin as a poison by gold doped PdO nanoparticles supported on reduced graphene oxide nanocomposites and evaluation of its antibacterial activity. J Photochem Photobiol B Biol 167:58–63

    Article  CAS  Google Scholar 

  • Fakhri A, Nejad PA (2016) Antimicrobial, antioxidant and cytotoxic effect of molybdenum trioxide nanoparticles and application of this for degradation of ketamine under different light illumination. J Photochem Photobiol B Biol 159:211–217

    Article  CAS  Google Scholar 

  • Fakhri A, Pourmand M, Khakpour R, Behrouz S (2015) Structural, optical, photoluminescence and antibacterial properties of copper-doped silver sulfide nanoparticles. J Photochem Photobiol B Biol 149:78–83

    Article  CAS  Google Scholar 

  • Fakhri A, Rashidi S, Tyagi I, Agarwal S, Gupta VK (2016) Photodegradation of erythromycin antibiotic by γ-Fe2O3/SiO2 nanocomposite: response surface methodology modeling and optimization. J Mol Liq 214:378–383

    Article  CAS  Google Scholar 

  • Feng N, Zheng AM, Wangetal Q (2011) Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study. J Phys Chem C 115:2709–2719

    Article  CAS  Google Scholar 

  • Finazzi E, Di Valentin C, Pacchioni G (2009) Boron-doped anatase TiO2: pure and hybrid DFT calculations. J Phys Chem C 113:220–228

    Article  CAS  Google Scholar 

  • Gautam S, Kamble SP, Sawant SB, Pangarkar VG (2006) Photocatalytic degradation of 3 nitrobenzene sulfonic acid in aqueous TiO2 suspensions. J Chem Technol Biotechnol 81:359–364

    Article  CAS  Google Scholar 

  • Gombac V, De Rogatis L, Gasparotto A, Vicario G, Montini T, Barreca D, Balducci G, Fornasiero P, Tondello E, Graziani M (2007) TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem Phys 339:111–123

    Article  CAS  Google Scholar 

  • Haider S, Kamal T, Khan SB, Omar M, Haider A, Khan FU, Asiri AM (2016) Natural polymers supported copper nanoparticles for pollutants degradation. Appl Surf Sci 387:1154–1161

    Article  CAS  Google Scholar 

  • Hamadanian M, Reisi-Vanani A, Majedi A (2009) Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Mater Chem Phys 116:376–382

    Article  CAS  Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview & future prospects. Jap J Appl Phys 44:8269–8285

    Article  CAS  Google Scholar 

  • Hassani A, Khataee A, Karaca S, Fathinia M (2016) Heterogeneous photocatalytic ozonation of ciprofloxacin using synthesized titanium dioxide nanoparticles on a montmorillonite support: parametric studies, mechanistic analysis and intermediates identification. RSC Adv 6:87569–87583

    Article  CAS  Google Scholar 

  • Hassani A, Khataee A, Fathinia M, Karaca S (2018a) Photocatalytic ozonation of ciprofloxacin from aqueous solution using TiO2/MMT nanocomposite: nonlinear modeling and optimization of the process via artificial neural network integrated genetic algorithm. Process Saf Environ Prot 116:365–376

    Article  CAS  Google Scholar 

  • Hassani A, Eghbali P, Ekicibil A, Metin O (2018b) Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4): a magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes. J Magn Magn Mater 456:400–412

    Article  CAS  Google Scholar 

  • Hong XT, Wang ZP, Cai WM, Lu F, Zhang J, Yang YZ, Ma N, Liu Y (2005) Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. J Chem Mater 17:1548–1552

    Article  CAS  Google Scholar 

  • In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. J Am Chem Soc 129:13790–13791

    Article  CAS  Google Scholar 

  • Islam S, Bormon SK, Hossain MNK, Habib A, Islam TSA (2014) Photocatalytic degradation of p-nitrophenol (PNP) in aqueous suspension of TiO2. Am J Anal Chem 5:483–489

    Article  CAS  Google Scholar 

  • Kafizas A, Parkin IP (2011) Combinatorial atmospheric pressure chemical vapor deposition (cAPCVD): a route to functional property optimization. J Am Chem Soc 133:20458–20467

    Article  CAS  Google Scholar 

  • Kamal T, Ahmad I, Khan SB, Asiri AM (2019a) Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles. Int J Biol Macromol 135:1162–1170

    Article  CAS  Google Scholar 

  • Kamal T, Ali F, Ahmad I, Asiri AM, Khan SB (2019b) Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int J Biol Macromol 132:772–783

    Article  CAS  Google Scholar 

  • Kavitha V, Palanivelu K (2005) Degradation of nitrophenols by Fenton and photo-Fenton processes. J Photochem Photobiol A Chem 170:83–95

    Article  CAS  Google Scholar 

  • Khan FU, Asimullah, Khan SB, Kamal T, Asiri AM, Khan IU, Akhtar K (2017) Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Int J Biol Macromol 102:868–877

    Article  CAS  Google Scholar 

  • Kim E, Kim DS, Ahn B (2009) Synthesis of mesoporous TiO2 and its application to photocatalytic activation of methylene blue and E. coli. Bull Kor Chem Soc 30:193–198

    Article  CAS  Google Scholar 

  • Kumaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B Environ 244:1021–1064

    Article  CAS  Google Scholar 

  • Lea J, Adesina AA (2001) Oxidative degradation of 4-nitrophenol UV illuminated TiO2 suspension. J Chem Technol Biotechnol 76:803–810

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Liu X, Zhao L, Lai H, Li S, Yi Z (2017) Efficient photocatalytic degradation of 4-nitrophenol over graphene modified TiO2. J Chem Technol Biotechnol 92:2417–2424

    Article  CAS  Google Scholar 

  • May-Lozano M, Ramos-Reyes GM, López-Medina R, Martínez-Delgadillo SA, Flores-Moreno J, Hernández-Pérez I (2014) Effect of the amount of water in the synthesis of B-TiO2: Orange II photodegradation. Inter J Photochem 2014:721216 8 pages

    Article  Google Scholar 

  • Mohammadi S, Sohrabi M, Golikand AN, Fakhri A (2016) Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: application in photocatalysis and photobiology. J Photochem Photobiol B Biol 161:217–221

    Article  CAS  Google Scholar 

  • Nevim S, Arzu H, Gülin K, Zekiye Ç (2002) Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates. J Photochem Photobiol A Chem 146:189–197

    Article  Google Scholar 

  • Osin OA, Yu T, Cai X, Jiang Y, Peng G, Cheng X, Li R, Qin Y, Lin S (2018) Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2: Degradation efficiency vs. embryonic toxicity of the resulting compounds. Front Chem 6(92):1–9

    Google Scholar 

  • Park H, Choi W (2004) Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J Phys Chem B 108:4086–4093

    Article  CAS  Google Scholar 

  • Rahimi R, Rabbani M, Moghaddam SS (2012) Comparison of photocatalysis degradation of 4-nitrophenol using N,S co-doped TiO2 nanoparticles synthesized by two different routes. J Sol-Gel Sci Technol 64:17–26

    Article  CAS  Google Scholar 

  • Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic acitivity of mesoporous carbon-doped crystalline TiO2. Appl Catal B 69:138–144

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Gottinger Nachrichten Gesell. 2:98

  • Sharma G, Singh K, Priya M, Mohan S, Singh H, Bindra S (2006) Effects of gamma irradiation on optical and structural properties of PbO-Bi2O3-B2O glasses. Radiat Phys Chem 75:959–966

    Article  CAS  Google Scholar 

  • Shipra G, Manoj T (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    Article  CAS  Google Scholar 

  • Sigaev VN, Pernice P, Aronne A, Akimova OV, Stefanovich SY, Scagline A (2001) KTiOPO4 precipitation from potassium titanium phosphate glasses, producing second harmonic generation J. Non-Cryst Solids 92:59–69

    Article  Google Scholar 

  • Sing KSW, Everet DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Singh P, Kumar A, Kaur D (2009) Mn-doped ZnO nanocrystalline thin films prepared by ultrasonic spray pyrolysis. J Alloys Compd 471:11–15

    Article  CAS  Google Scholar 

  • Stengl V, Housková V, Bakardjieva S, Murafa N (2010) Photocatalytic activity of boron-modified TiO2 under UV and visible-light illumination. Appl Mater Interfaces 2:575–580

    Article  CAS  Google Scholar 

  • Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 5:721–730

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (1980) 4-Nitrophenol, health and environmental effects Profile No. 135, Washington DC

  • Viswanathan B, Krishanmurthy KR (2012) Nitrogen incorporation in TiO2: does it make a visible light photoactive material. Inter J Photoenergy (ID 269654)1–10

  • Ward MD, Bard AJ (1982) Photocurrent enhancement via trapping of photogenerated electrons of TiO2 particles. J Phys Chem 86:3599–3605

    Article  CAS  Google Scholar 

  • Won-Young A, Sarah AS, Tijana R, Donald MC (2007) Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Appl Catal B Environ 74:103–110

    Article  CAS  Google Scholar 

  • Wood DL, Rabinovich EM, Johnson DW Jr, Mac-Chesney JB, Vogel EM (1983) Preparation of high-silica glasses from colloidal gels. 3. Infrared spectrophotometric studies. J Am Ceram Soc 66:693–699

    Article  CAS  Google Scholar 

  • Xiong LB, Li JL, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:831524 13 pages

    Article  CAS  Google Scholar 

  • Xu JJ, Ao YH, Chen MD, Fu DG (2009) Low temperature preparation of boron-doped TiO2 by hydrothermal method and its photocatalytic activity. J Alloys Compd 484:73–79

    Article  CAS  Google Scholar 

  • Yao GP, Li J, Luo Y, Sun WJ (2012) Efficient visible photodegradation of 4-nitrophenol in the presence of H2O2 by using a new copper(II) porphyrin–TiO2 photocatalyst. J Mol Catal A Chem 361–362:29–35

    Article  CAS  Google Scholar 

  • Zaleska A, Sobczak JW, Grabowska E, Hupka J (2008) Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl Catal B Environ 78:92–100

    Article  CAS  Google Scholar 

  • Zaleska A, Grabowska E, Sobczak JW, Gazda M, Hupka J (2009) Photocatalytic activity of boron-modified TiO2 under visible light: the effect of boron content, calcination temperature and TiO2 matrix. Appl Catal B Environ 89:469–475

    Article  CAS  Google Scholar 

  • Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33:912–916

    Article  CAS  Google Scholar 

  • Zhang YG, Ma LL, Li JL, Yu Y (2007) In situ Fenton reagent generated from TiO2/CuO2 composite film: a new way to utilize TiO2 under visible light irradiation. Environ Sci Technol 41:6264–6269

    Article  CAS  Google Scholar 

  • Zhang W, Yang B, Chen J (2012) Effects of calcination temperature on preparation of boron-doped TiO2 by sol-gel method. Inter J Photoenergy 2012:528637 8 pages

    Google Scholar 

  • Zhou MH, Yu JG, Cheng B, Yu HG (2005) Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater Chem Phys 93:159–163

    Article  CAS  Google Scholar 

  • Zhu J, Yang J, Bian ZF, Ren H, Liu YM, Cao Y, Li HX, He HY, Fan KN (2007) Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol–gel reaction of TiCl4 and benzyl alcohol. Appl Catal B 76:82–91

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. R. K. Singh, Indian Institute of Petroleum, CSIR, Dehradun, for providing assistance in UV-Vis DRS and FTIR study. Author Vandana Yadav is thankful to University Grants Commission for her doctoral grant (NFO-2015-17-OBC-UTT-29056) which provided the impetus needed to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar Saini.

Additional information

Responsible Editor: Suresh Pillai

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, V., Verma, P., Sharma, H. et al. Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: effect of dopant concentration, kinetics, and mechanism. Environ Sci Pollut Res 27, 10966–10980 (2020). https://doi.org/10.1007/s11356-019-06674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06674-x

Keywords

Navigation