Skip to main content
Log in

Effect of carbon nanotubes/graphene nanoplates hybrid to ZnO matrix: production, electrical and optical properties of nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrical and optical properties of pure and carbon nanotube (CNT)/graphene nanoplate (GNP) mixture-reinforced zinc oxide (ZnO) matrix at different temperatures were investigated. UV–Vis absorption and electrical conductivity measurements were used in order to determine the properties were mentioned above. Samples were divided two main groups based on their matrix: one of them commercially acquired ZnO and the other one was produced via sol–gel method. Both groups have the same four sub-groups according to the percentage of the weight of the reinforcing. SEM images indicated that commercially obtained ZnO matrix has hexagonal structure while ZnO manufactured by sol–gel was mainly in sphere form. Raman spectroscopy and TEM analyses proved that graphene nanoplate structure was produced successfully, and XRD characterization shows that ZnO was produced in a suitable way by sol–gel method. The results indicated that electrical conductivity of the samples which from pure to 0.4% reinforced was decreased with increasing in reinforcing percentage. However, samples with 0.8% CNT/GNP mixture reinforcing showed greatest electrical conductivity. The highest reflection percentages of the samples were obtained from the pure specimens while the lowest ratios were observed in the highest reinforced samples. Activation energy and optical band gap values were calculated according to electrical and optical graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Sahoo, A. Mundamajhi, S.K. Das, J. Mater. Sci. 30, 4541–4547 (2019)

    CAS  Google Scholar 

  2. J. Liu, F. Yi, J. Mater. Sci. 30, 11404–11411 (2019)

    CAS  Google Scholar 

  3. C. Narula, I. Kaur, N. Kaur, J. Mater. Sci. 26, 8167–8175 (2015)

    CAS  Google Scholar 

  4. S. Vallisree, A. Ghosh, R. Thangavel, T. Lenka, J. Mater. Sci. 29, 7273–7273 (2018)

    CAS  Google Scholar 

  5. M.-C. Pan, T.-H. Wu, T.-A. Bui, W.-C. Shih, J. Mater. Sci. 23, 418–424 (2012)

    CAS  Google Scholar 

  6. H. Efkere, A. Tataroglu, S. Cetin, N. Topaloglu, M.P. Gonullu, H. Ates, J. Mol. Struct. 1165, 376–380 (2018)

    CAS  Google Scholar 

  7. S. Liu, B. Li, H. Kan, M.-Y. Li, B. Xie, S. Jiang, X. Zhu, J. Mater. Sci. 28, 15891–15898 (2017)

    CAS  Google Scholar 

  8. B. Kilic, J. Mater. Sci. 30, 3482–3487 (2019)

    CAS  Google Scholar 

  9. Y. Lare, M. Banéto, L. Cattin, M. Morsli, K. Jondo, K. Napo, J.C. Bernède, J. Mater. Sci. 22, 365–370 (2011)

    CAS  Google Scholar 

  10. B. Xue, Y. Zou, J. Colloid Interface Sci. 529, 306–313 (2018)

    CAS  Google Scholar 

  11. K. Byrappa, A. Dayananda, C. Sajan, B. Basavalingu, M. Shayan, K. Soga, M. Yoshimura, J. Mater. Sci. 43, 2348–2355 (2008)

    CAS  Google Scholar 

  12. H. Fu, T. Xu, S. Zhu, Y. Zhu, Environ. Sci. Technol. 42, 8064–8069 (2008)

    CAS  Google Scholar 

  13. L. Zhang, H. Cheng, R. Zong, Y. Zhu, J. Phys. Chem. C 113, 2368–2374 (2009)

    Google Scholar 

  14. S. Darbari, V. Ahmadi, P. Afzali, Y. Abdi, J. Phys. D 46, 385101 (2013)

    Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991)

    CAS  Google Scholar 

  16. R. Ghanbari, S.R. Ghorbani, H. Arabi, J. Foroughi, Physica C 548, 78–81 (2018)

    CAS  Google Scholar 

  17. J. Foroughi, G.M. Spinks, G.G. Wallace, J. Oh, M.E. Kozlov, S. Fang, T. Mirfakhrai, J.D. Madden, M.K. Shin, S.J. Kim, Science 334, 494–497 (2011)

    CAS  Google Scholar 

  18. M. Adamska, U. Narkiewicz, J. Fluor. Chem. 200, 179–189 (2017)

    CAS  Google Scholar 

  19. R. Saraf, Int. J. Nano Device Sens. Syst. 2, 1 (2013)

    Google Scholar 

  20. L. Lascialfari, P. Marsili, S. Caporali, M. Muniz-Miranda, G. Margheri, A. Serafini, A. Brandi, E. Giorgetti, S. Cicchi, Thin Solid Films 569, 93–99 (2014)

    CAS  Google Scholar 

  21. I. Pełech, U. Narkiewicz, A. Kaczmarek, A. Jędrzejewska, Pol. J. Chem. Technol. 16, 117–122 (2014)

    Google Scholar 

  22. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science. 321, 385–388 (2008)

    CAS  Google Scholar 

  23. J. Hao, L. Ji, K. Wu, N. Yang, Carbon 130, 480–486 (2018)

    CAS  Google Scholar 

  24. C. Soldano, A. Mahmood, E. Dujardin, Carbon 48, 2127–2150 (2010)

    CAS  Google Scholar 

  25. N.T. Hang, S. Zhang, J.-S. Noh, W. Yang, Thin Solid Films 660, 631–636 (2018)

    Google Scholar 

  26. J.S. Shaikh, N.S. Shaikh, R. Kharade, S.A. Beknalkar, J.V. Patil, M.P. Suryawanshi, P. Kanjanaboos, C.K. Hong, J.H. Kim, P.S. Patil, J. Colloid Interface Sci. 527, 40–48 (2018)

    CAS  Google Scholar 

  27. I. Antonova, S. Golod, R. Soots, A. Komonov, V. Seleznev, M. Sergeev, V. Volodin, V.Y. Prinz, Semiconductors 48, 804–808 (2014)

    CAS  Google Scholar 

  28. X. Fu, Y. Liu, X. Cao, J. Jin, Q. Liu, J. Zhang, Appl. Catal. B 130, 143–151 (2013)

    Google Scholar 

  29. M. Safdari, M.S. Al-Haik, Carbon 64, 111–121 (2013)

    CAS  Google Scholar 

  30. L. Shahriary, A.A. Athawale, Int. J. Renew. Energy Environ. Eng 2, 58–63 (2014)

    Google Scholar 

  31. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126–1130 (1970)

    CAS  Google Scholar 

  32. K. Zhou, Y. Shi, S. Jiang, L. Song, Y. Hu, Z. Gui, Mater. Res. Bull. 48, 2985–2992 (2013)

    CAS  Google Scholar 

  33. Ö. Guler, S.H. Guler, F. Yo, H. Aydin, C. Aydin, F. El-Tantawy, E.-S.M. Duraia, A. Fouda, Fullerenes Nanotubes Carbon Nanostruct. 23, 865–869 (2015)

    CAS  Google Scholar 

  34. Ö. Güler, Sci. Eng. Compos. Mater. 23, 389–394 (2016)

    Google Scholar 

  35. O. Guler, S.H. Güler, Ö Başgöz, M.G. Albayrak, I. Yahia, Mater. Res. Expr. (2019)

  36. O. Guler, Int. J. Mater. Res. 106, 641–646 (2015)

    CAS  Google Scholar 

  37. R. Elilarassi, G. Chandrasekaran, Spectrochim. Acta Part A 186, 120–131 (2017)

    CAS  Google Scholar 

  38. S.H. Güler, Ö. Güler, E. Evin, S. Islak, Optik-Int. J. Light Electron Opt. 127, 3187–3191 (2016)

    Google Scholar 

  39. J. Tauc, Amorphous and Liquid Semiconductors, (Springer, New York, 2012)

  40. Y. Caglar, M. Caglar, S. Ilican, Curr. Appl. Phys. 12, 963–968 (2012)

    Google Scholar 

  41. A. Mhamdi, B. Ouni, A. Amlouk, K. Boubaker, M. Amlouk, J. Alloy. Compd. 582, 810–822 (2014)

    CAS  Google Scholar 

  42. S. Khan, J. Ali, M. Husain, M. Zulfequar, E. Physica, Low-Dimension. Syst. Nanostruct. 81, 320–325 (2016)

    CAS  Google Scholar 

  43. P. Sagar, M. Kumar, R. Mehra, Mater. Sci. 23, 685–696 (2005)

    CAS  Google Scholar 

  44. F. Yakuphanoglu, Y. Caglar, S. Ilican, M. Caglar, Physica B 394, 86–92 (2007)

    CAS  Google Scholar 

  45. A. Farag, M. Cavaş, F. Yakuphanoglu, F. Amanullah, J. Alloy. Compd. 509, 7900–7908 (2011)

    CAS  Google Scholar 

  46. E. Davis, N. Mott, Philos. Mag. 22, 0903–0922 (1970)

    CAS  Google Scholar 

  47. S.H. Güler, M. Boyrazlı, Ö Başgöz, F. Yakuphanoglu, Physica B 547, 120–126 (2018)

    Google Scholar 

  48. D. Chaudhary, S. Singh, V. Vankar, N. Khare, J. Photochem. Photobiol. A 351, 154–161 (2018)

    CAS  Google Scholar 

  49. S. Elmas, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, M. Özgür, U. Demirkol, S. Özen, Ş Korkmaz, Physica B 557, 27–33 (2019)

    CAS  Google Scholar 

  50. D. Segets, J. Gradl, R.K. Taylor, V. Vassilev, W. Peukert, ACS Nano 3, 1703–1710 (2009)

    CAS  Google Scholar 

  51. A. Roth, D. Williams, J. Appl. Phys. 52, 6685–6692 (1981)

    CAS  Google Scholar 

  52. S. Mahboob, G. Prasad, G. Kumar, Bull. Mater. Sci. 29, 347–355 (2006)

    CAS  Google Scholar 

  53. Y. Huang, X. Hu, Y. Qian, S. Huang, D. Li, Fullerenes Nanotubes Carbon Nanostruct. (2019)

  54. S. Safa, R. Sarraf-Mamoory, R. Azimirad, J. Sol-Gel. Sci. Technol. 74, 499–506 (2015)

    CAS  Google Scholar 

  55. D. Zhang, Z. Wu, X. Zong, Sens. Actuators B 288, 232–242 (2019)

    CAS  Google Scholar 

  56. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Sens. Actuators B 255, 1869–1877 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Güler.

Additional information

Publisher's Note

pringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güler, Ö., Yavuz, Ç., Başgöz, Ö. et al. Effect of carbon nanotubes/graphene nanoplates hybrid to ZnO matrix: production, electrical and optical properties of nanocomposite. J Mater Sci: Mater Electron 31, 3184–3196 (2020). https://doi.org/10.1007/s10854-020-02866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02866-1

Navigation