Skip to main content

Advertisement

Log in

Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cocatalysts play important roles in photocatalytic and photoelectrochemical water splitting reactions. However, the formation of well-defined junctions between low dimensional semiconductors and cocatalysts is still challenging. In this study, CdS nanorod photoanodes loaded with cobalt phosphate (CoPi) cocatalyst were synthesized by a facile two-step route, in which CdS nanorods were prepared using a hydrothermal method followed by photo-assisted electrodeposition of CoPi. It was found that the formation of intimate junctions between CoPi and CdS nanorods in the form of Co–S bonding effectively facilitated the charge separation and lowered the activation energy of the water oxidation reaction. This resulted in highly efficient and stable photoelectrochemical water splitting on the CdS photoanode. The optimal CdS/CoPi photoanode showed a maximum photocurrent of 4.7 mA/cm2 at 0 V versus reversible hydrogen electrode under an AM 1.5 G solar simulator, which was 5.5-fold higher than that of bare CdS photoanode. This work expands the potential application of the cocatalyst CoPi in CdS photoanode systems and improves our understanding of the nature of cocatalysts with well-defined interface junctions in semiconductors.

Graphic Abstract

Well-defined interfacial junction with Co–S bonding over cobalt phosphate cocatalyzed CdS nanorod photoanode facilitates the charge separation and lowers the activation energy, thus achieving a considerable photocurrent of 4.7 mA/cm2 at 0 V vs. RHE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446

    Article  CAS  PubMed  Google Scholar 

  2. Grätzel M (2001) Nature 414:338

    Article  PubMed  Google Scholar 

  3. Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev 43:7520

    Article  CAS  PubMed  Google Scholar 

  4. Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Nørskov JK (2016) Nat mater 16:70

    Article  PubMed  CAS  Google Scholar 

  5. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Energy Environ Sci 6:1983

    Article  CAS  Google Scholar 

  6. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  PubMed  Google Scholar 

  7. Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nano Lett 9:2331

    Article  CAS  PubMed  Google Scholar 

  8. Kim TW, Choi KS (2014) Science 343:990

    Article  CAS  PubMed  Google Scholar 

  9. Sivula K, Le Formal F, Grätzel M (2011) Chemsuschem 4:432

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J (2013) Domen K Adv Mater 25:125

    Article  CAS  PubMed  Google Scholar 

  11. Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrovic A, Volbers D, Wyrwich R, Doblinger M, Susha AS, Rogach AL, Jackel F, Stolarczyk JK, Feldmann J (2014) Nat Mater 13:1013

    Article  CAS  PubMed  Google Scholar 

  12. Wu K, Zhu H, Liu Z, Rodriguez-Cordoba W, Lian T (2012) J Am Chem Soc 134:10337

    Article  CAS  PubMed  Google Scholar 

  13. Zheng XL, Song JP, Ling T, Hu ZP, Yin PF, Davey K, Du XW, Qiao SZ (2016) Adv Mater 28:4935

    Article  CAS  PubMed  Google Scholar 

  14. Han S, Pu YC, Zheng L, Hu L, Zhang JZ, Fang X (2016) J Mater Chem A 4:1078

    Article  CAS  Google Scholar 

  15. Li Q, Li X, Wageh S, Al-Ghamdi AA, Yu J (2015) Adv Energy Mater 5:1500010

    Article  CAS  Google Scholar 

  16. Zhang N, Yang MQ, Tang ZR, Xu YJ (2013) J Catal 303:60

    Article  CAS  Google Scholar 

  17. Cheng L, Xiang Q, Liao Y, Zhang H (2018) Energy Environ Sci 11:1362

    Article  CAS  Google Scholar 

  18. Shi R, Ye HF, Liang F, Wang Z, Li K, Weng Y, Lin Z, Fu WF, Che CM, Chen Y (2018) Adv Mater 30:1705941

    Article  CAS  Google Scholar 

  19. Liu Y, Yu YX, Zhang WD (2013) J Phys Chem C 117:12949

    Article  CAS  Google Scholar 

  20. Hao X, Cui Z, Zhou J, Wang Y, Hu Y, Wang Y, Zou Z (2018) Nano Energy 52:105

    Article  CAS  Google Scholar 

  21. Wolff CM, Frischmann PD, Schulze M, Bohn BJ, Wein R, Livadas P, Carlson MT, Jäckel F, Feldmann J, Würthner F, Stolarczyk JK (2018) Nat Energy 3:862

    Article  CAS  Google Scholar 

  22. Zhao Q, Yao W, Huang C, Wu Q, Xu Q (2017) ACS Appl Mater Interfaces 9:42734

    Article  CAS  PubMed  Google Scholar 

  23. Luo M, Lu P, Yao W, Huang C, Xu Q, Wu Q, Kuwahara Y, Yamashita H (2016) ACS Appl Mater Interfaces 8:20667

    Article  CAS  PubMed  Google Scholar 

  24. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C (2009) J Catal 266:165

    Article  CAS  Google Scholar 

  25. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Chem Soc Rev 43:7787

    Article  CAS  PubMed  Google Scholar 

  26. Ding C, Shi J, Wang Z, Li C (2016) ACS Catal 7:675

    Article  CAS  Google Scholar 

  27. Yang J, Wang D, Han H, Li C (2013) Acc Chem Res 46:1900

    Article  CAS  PubMed  Google Scholar 

  28. Steinmiller EM, Choi KS (2009) Proc Natl Acad Sci USA 106:20633

    Article  CAS  PubMed  Google Scholar 

  29. Sarkar A, Karmakar K, Khan GG (2017) J Phys Chem C 121:25705

    Article  CAS  Google Scholar 

  30. Young ER, Costi R, Paydavosi S, Nocera DG, Bulović V (2011) Energy Environ Sci 4:2058

    Article  CAS  Google Scholar 

  31. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Energy Environ Sci 4:5028

    Article  CAS  Google Scholar 

  32. Kanan MW, Surendranath Y, Nocera DG (2009) Chem Soc Rev 38:109

    Article  CAS  PubMed  Google Scholar 

  33. Surendranath Y, Dinca M, Nocera DG (2009) J Am Chem Soc 131:2615

    Article  CAS  PubMed  Google Scholar 

  34. Kanan MW, Nocera DG (2008) Science 321:1072

    Article  CAS  PubMed  Google Scholar 

  35. Lutterman DA, Surendranath Y, Nocera DG (2009) J Am Chem Soc 131:3838

    Article  CAS  PubMed  Google Scholar 

  36. McDonald KJ, Choi KS (2011) Chem Mater 23:1686

    Article  CAS  Google Scholar 

  37. Di T, Zhu B, Zhang J, Cheng B, Yu J (2016) Appl Surf Sci 389:775

    Article  CAS  Google Scholar 

  38. Ai G, Li H, Liu S, Mo R, Zhong J (2015) Adv Funct Mater 25:5706

    Article  CAS  Google Scholar 

  39. Zhang X, Wang X, Wang D, Ye J (2019) ACS Appl Mater Interfaces 11:5623

    Article  CAS  PubMed  Google Scholar 

  40. Zhong DK, Cornuz M, Sivula K, Grätzel M, Gamelin DR (2011) Energy Environ Sci 4:1759

    Article  CAS  Google Scholar 

  41. Zhong DK, Gamelin DR (2010) J Am Chem Soc 132:4202

    Article  CAS  PubMed  Google Scholar 

  42. Zhong DK, Choi S, Gamelin DR (2011) J Am Chem Soc 133:18370

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Wang W, Chen Y, Yao L, Zhao X, Shi H, Cao M, Liang Y (2018) ACS Appl Mater Interfaces 10:11652

    Article  CAS  PubMed  Google Scholar 

  44. Milman V, Winkler B, White JA, Pickard CJ, Payne MC, Akhmatskaya EV, Nobes RH (2000) Int J Quantum Chem 77:895

    Article  CAS  Google Scholar 

  45. Liu C, Dong H, Ji Y, Hou T, Li Y (2018) Sci Rep 8:13292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Valdes A, Qu ZW, Kroes GJ (2008) J Phys Chem C 112:9872

    Article  CAS  Google Scholar 

  47. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L (2004) J Phys Chem B 108:17886

    Article  CAS  Google Scholar 

  48. Bera R, Dutta A, Kundu S, Polshettiwar V, Patra A (2018) J Phys Chem C 122:12158

    Article  CAS  Google Scholar 

  49. Li S, Peng S, Huang L, Cui X, Al-Enizi A, Zheng G (2016) ACS Appl Mater Interfaces 8:20534

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Li P, Yin X, Yan Y, Zhan K, Yang J, Zhao B (2017) RSC Adv 7:50246

    Article  CAS  Google Scholar 

  51. Zhen W, Ning X, Yang B, Wu Y, Li Z, Lu G (2018) Appl Catal B Environ 221:243

    Article  CAS  Google Scholar 

  52. Zhang P, Naftel SJ, Sham TK (2001) J Appl Phys 90:2755

    Article  CAS  Google Scholar 

  53. McKeown DA, Muller IS, Gan H, Pegg IL, Stolte WC (2004) J Non-Cryst Solids 333:74

    Article  CAS  Google Scholar 

  54. Soo YL, Sun WH, Weng SC, Lin YS, Chang SL, Jang LY, Wu X, Yan Y (2006) Appl Phys Lett 89:131908

    Article  CAS  Google Scholar 

  55. Kadono T, Kubota T, Hiromitsu I, Okamoto Y (2006) Appl Catal A Gen 312:125

    Article  CAS  Google Scholar 

  56. Barroso M, Cowan AJ, Pendlebury SR, Grätzel M, Klug DR, Durrant JR (2011) J Am Chem Soc 133:14868

    Article  CAS  PubMed  Google Scholar 

  57. Trześniewski BJ, Smith WA (2016) J Mater Chem A 4:2919

    Article  CAS  Google Scholar 

  58. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Chem Soc Rev 46:4645

    Article  CAS  PubMed  Google Scholar 

  59. Krol R, Grätzel M (2012) Photoelectrochemical hydrogen production. Springer, Berlin

    Book  Google Scholar 

  60. Kunadian I, Lipka SM, Swartz CR, Qian D, Andrews R (2009) J Electrochem Soc 156:K110

    Article  CAS  Google Scholar 

  61. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC (2011) Energy Environ Sci 4:958

    Article  CAS  Google Scholar 

  62. Wang S, Gao Y, Miao S, Liu T, Mu L, Li R, Fan F, Li C (2017) J Am Chem Soc 139:11771

    Article  CAS  PubMed  Google Scholar 

  63. Chen S, Takata T, Domen K (2017) Nat. Rev. Mater. 2:17050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700205), the National Natural Science Foundation of China (Grant Nos. U1632273, U1832165, 201902001), Foundation from Key Laboratory of Photovoltaic and Energy Conservation, CAS (Grant No. PECL2018KF012), Hefei Center for Physical Science and Technology (Grant No. 2016FXZY002), and Anhui Provincial Natural Science Foundation (Grant No. 17080885MB46). The authors thank the staff at 4B7A endstation in BSRF for their assistance in acquiring XAFS data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shikuo Li or Song Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Zhu, X., Zeng, Y. et al. Cobalt Phosphate Cocatalyst Loaded-CdS Nanorod Photoanode with Well-Defined Junctions for Highly Efficient Photoelectrochemical Water Splitting. Catal Lett 150, 1878–1889 (2020). https://doi.org/10.1007/s10562-019-03084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03084-z

Keywords

Navigation