Skip to main content
Log in

In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The urgent demands for high-energy-density rechargeable batteries promote a flourishing development of Li metal anode. However, the uncontrollable dendrites growth and serious side reactions severely limit its commercial application. Herein, an artificial LiF-rich solid electrolyte interphase (SEI) is constructed at molecular-level using one-step photopolymerization of hexafluorobutyl acrylate based solution, where the LiF is in situ generated during photopolymerization process (denoted as PHALF). The LiF-rich layer comprised flexible polymer matrix and inorganic LiF filler not only ensures intimate contact with Li anode and adapts volume fluctuations during cycling but also regulates Li deposition behavior, enabling it to suppress the dendrite growth and block side reactions between the electrolyte and Li metal. Accordingly, the PHALF-Li anode presents superior stable cycling performance over 500 h at 1 mA·cm−2 for 1 mA·h·cm−2 without dendrites growth in carbonate electrolyte. The work provides a novel approach to design and build in situ artificial SEI layer for high-safety and stable Li metal anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xue, P.; Liu, S. R.; Shi, X. L.; Sun, C.; Lai, C.; Zhou, Y.; Sui, D.; Chen, Y. S.; Liang, J. J. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater.2018, 30, e1804165.

    Google Scholar 

  2. Peng, Z.; Ren, F. H.; Yang, S. S.; Wang, M. Q.; Sun, J.; Wang, D. Y.; Xu, W.; Zhang, J. G. A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure. Nano Energy2019, 59, 110–119.

    CAS  Google Scholar 

  3. Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater.2017, 29, 1603755.

    Google Scholar 

  4. Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci.2017, 10, 331–336.

    CAS  Google Scholar 

  5. Yan, M.; Wang, W. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Interfacial design for lithium-sulfur batteries: From liquid to solid. EnergyChem2019, 7, 100002.

    Google Scholar 

  6. Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater.2019, 31, 1903955.

    CAS  Google Scholar 

  7. Yang, C. P.; Xie, H.; Ping, W. W.; Fu, K.; Liu, B. Y.; Rao, J. C.; Dai, J. Q.; Wang, C. W.; Pastel, G.; Hu, L. B. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater.2019, 31, 1804815.

    Google Scholar 

  8. Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater.2018, 30, 1706216.

    Google Scholar 

  9. Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res.2019, 72, 2224–2229.

    Google Scholar 

  10. Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater.2018, 8, 1800266.

    Google Scholar 

  11. Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater.2018, 28, 1705838.

    Google Scholar 

  12. Li, L. Y.; Chen, C. G.; Yu, A. S. New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries. Sci. China Chem.2017, 60, 1402–1412.

    CAS  Google Scholar 

  13. Liu, Y. Y.; Lin, D. C.; Li, Y. Z.; Chen, G. X.; Pei, A.; Nix, O.; Li, Y. B.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun.2018, 9, 3656.

    Google Scholar 

  14. Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high coulombic efficiency and long cycle life. Nano Res.2016, 9, 3428–3436.

    CAS  Google Scholar 

  15. Li, N. W.; Yin, Y. X.; Li, J. Y.; Zhang, C. H.; Guo, Y. G. Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping. Adv. Sci.2017, 4, 1600400.

    Google Scholar 

  16. Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater.2018, 30, e1804461.

    Google Scholar 

  17. Liu, S. F.; Xia, X. H.; Deng, S. J.; Xie, D.; Yao, Z. J.; Zhang, L. Y.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct highperformance lithium-metal anodes. Adv. Mater.2019, 31, 1806470.

    Google Scholar 

  18. Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-Ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater.2017, 29, 1605531.

    Google Scholar 

  19. Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol.2014, 9, 618–623.

    CAS  Google Scholar 

  20. Huang, G.; Han, J. H.; Zhang, F.; Wang, Z. Q.; Kashani, H.; Watanabe, K.; Chen, M. W. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes. Adv. Mater.2019, 31, 1805334.

    Google Scholar 

  21. Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater.2018, 8, 1703404.

    Google Scholar 

  22. Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy2016, 7, 16071.

    Google Scholar 

  23. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol.2017, 72, 194–206.

    Google Scholar 

  24. Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun.2015, 6, 8058.

    CAS  Google Scholar 

  25. Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F. et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem., Int. Ed.2019, 58, 1094–1099.

    CAS  Google Scholar 

  26. Zhou, W. D.; Wang, S. F.; Li, Y. T.; Xin, S.; Manthiram, A.; Goodenough, J. B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc.2016, 138, 9385–9388.

    CAS  Google Scholar 

  27. Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc.2018, 140, 82–85.

    CAS  Google Scholar 

  28. Duan, H.; Fan, M.; Chen, W. P.; Li, J. Y.; Wang, P. F.; Wang, W. P.; Shi, J. L.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater.2019, 31, e1807789.

    Google Scholar 

  29. Li, Y.; Wang, X. G.; Dong, S. M.; Chen, X.; Cui, G. L. Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries. Adv. Energy Mater.2016, 6, 1600751.

    Google Scholar 

  30. Liu, F.; Xiao, Q. F.; Wu, H. B.; Shen, L.; Xu, D.; Cai, M.; Lu, Y. F. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv. Energy Mater.2018, 8, 1701744.

    Google Scholar 

  31. Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. N. et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc.2017, 139, 4815–4820.

    CAS  Google Scholar 

  32. Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater.2018, 8, 1701482.

    Google Scholar 

  33. Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, W. J.; Li, H.; Cui, G. L.; Chen, L. Q. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem. Mater.2017, 29, 4682–4689.

    CAS  Google Scholar 

  34. Hu, P.; Duan, Y. L.; Hu, D. P.; Qin, B. S.; Zhang, J. J.; Wang, Q. F.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. ACS Appl. Mater. Interfaces2015, 7, 4720–4727.

    CAS  Google Scholar 

  35. Sun, Y. P.; Zhao, Y.; Wang, J. W.; Liang, J. N.; Wang, C. H.; Sun, Q.; Lin, X. T.; Adair, K. R.; Luo, J.; Wang, D. W. et al. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv. Mater.2019, 31, 1806541.

    Google Scholar 

  36. Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv.2018, 4, eaau9245.

    CAS  Google Scholar 

  37. Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res.2017, 10, 4256–4265.

    CAS  Google Scholar 

  38. Liang, J. W.; Li, X. N.; Zhao, Y.; Goncharova, L. V.; Wang, G. M.; Adair, K. R.; Wang, C. H.; Li, R. Y.; Zhu, Y. C.; Qian, Y. T. et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes. Adv. Mater.2018, 30, 1804684.

    Google Scholar 

  39. Nova, A.; Mas-Ballesté, R.; Lledós, A. Breaking C-F bonds via nucleophilic attack of coordinated ligands: Transformations from C-F to C-X bonds (X= H, N, O, S). Organometallics2012, 31, 1245–1256.

    CAS  Google Scholar 

  40. Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed.2018, 57, 5301–5305.

    CAS  Google Scholar 

  41. Wang, H. S.; Lin, D. C.; Xie, J.; Liu, Y. Y.; Chen, H.; Li, Y. B.; Xu, J. W.; Zhou, G. M.; Zhang, Z. W.; Pei, A. et al. An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater.2019, 9, 1802720.

    Google Scholar 

  42. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater.2016, 28, 1853–1858.

    CAS  Google Scholar 

  43. Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater.2019, 18, 384–389.

    CAS  Google Scholar 

  44. Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater.2016, 28, 2888–2895.

    CAS  Google Scholar 

  45. Gu, F.; Xu, G. Q.; Ang, S. G. Fabrication of CuTAPc polymer nanowires and nanotubes by electropolymerization. Nanotechnology2008, 19, 145606.

    Google Scholar 

  46. Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater.2019, 31, 1902029.

    CAS  Google Scholar 

  47. Xue, Z. G.; He, D.; Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A2015, 3, 19218–19253.

    CAS  Google Scholar 

  48. Karaman, M.; Yenice, E. Plasma enhanced chemical vapor deposition of poly(2, 2, 3, 4, 4, 4-hexafluorobutyl acrylate) thin films. Chem. Vap. Deposition2015, 21, 188–195.

    CAS  Google Scholar 

  49. Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat. Chem.2016, 8, 426–434.

    CAS  Google Scholar 

  50. Devaux, D.; Harry, K. J.; Parkinson, D. Y.; Yuan, R.; Hallinan, D. T.; MacDowell, A. A.; Balsara, N. P. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc.2015, 162, A1301-A1309.

    CAS  Google Scholar 

  51. Ding, F.; Xu, W.; Chen, X. L.; Zhang, J.; Engelhard, M. H.; Zhang, Y. H.; Johnson, B. R.; Crum, J. V.; Blake, T. A.; Liu, X. J. et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc.2013, 160, A1894–A1901.

    CAS  Google Scholar 

  52. Zhang, H. M.; Liao, X. B.; Guan, Y. P.; Xiang, Y.; Li, M.; Zhang, W. F.; Zhu, X. Y.; Ming, H.; Lu, L.; Qiu, J. Y. et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun.2018, 9, 3729.

    Google Scholar 

  53. Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater.2015, 27, 5241–5247.

    CAS  Google Scholar 

  54. Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem., Int. Ed.2018, 57, 1505–1509.

    CAS  Google Scholar 

  55. Zhang, X.; Zhang, Q. M.; Wang, X. G.; Wang, C. Y.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. An extremely simple method for protecting lithium anodes in Li-O2 batteries. Angew. Chem., Int. Ed.2018, 57, 12814–12818.

    CAS  Google Scholar 

  56. Bobnar, J.; Lozinšek, M.; Kapun, G.; Njel, C.; Dedryvère, R.; Genorio, B.; Dominko, R. Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries. Sci. Rep.2018, 8, 5819.

    Google Scholar 

  57. Zhang, C. J.; Lin, Z.; Yang, Z. Z.; Xiao, D. D.; Hu, P.; Xu, H. X.; Duan, Y. L.; Pang, S. P.; Gu, L.; Cui, G. L. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage. Chem. Mater.2015, 27, 2189–2194.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Center Project of National Natural Science Foundation of China (No. 51788104), the National Natural Science Foundation of China (Nos. 21773264, 21805062, 21703257, 21603011), the National Key R&D Program of China (Nos. 2016YFA0202500 and 2018YFB0104300), Beijing Natural Science Foundation (No. L172023) and the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA 21070300), the Youth Innovation Promotion Association CAS (No. 2019033), the Fundamental Research Funds for the Central Universities (No. 2018JBM067). We thank Dr. Z. J. Z., Dr. X. Y. Z. and Dr. Y. S. at the Center for Analysis and Testing, ICCAS for their help for the XPS and XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Hua Kong, Xing Zhang or Yu-Guo Guo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SM., Duan, H., Shi, JL. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 13, 430–436 (2020). https://doi.org/10.1007/s12274-020-2625-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2625-z

Keywords

Navigation