Skip to main content
Log in

Column bleed in the analysis of highly polar substances: an overlooked aspect in HRMS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To close the “analytical gap” in the liquid chromatographic (LC) analysis of highly polar substances, two techniques which have been suggested earlier were tested in terms of retention factors and detection limits: hydrophilic interaction liquid chromatography (HILIC) and mixed-mode chromatography (MMC). A substance mix of 55 analytes ranging from logD − 8.2 to 3.4 and 17 different LC columns, also comprising additional reversed-phase columns were used. Contrary to most reversed-phase columns, column bleed has been identified as an important factor, which may cause serious restrictions during high-resolution mass spectrometric detection (HRMS). We found that highly abundant background masses continuously eluting from the columns heavily influence ion transmission to the detector. As a result, the linear dynamic range as well as the sensitivity decreases and thus limits the HRMS applicability of some columns. We therefore recommend a thorough investigation of ion transmission during HRMS method development. This will help to maintain the high potential of HRMS in terms of qualitative and quantitative screening analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berger U, Ost N, Sättler D, Schliebner I, Kühne R, Schüürman G, et al. Assessment of persistence, mobility and toxicity (PMT) of 167 REACH registered substances. Umweltbundesamt (UBA) Texte. 2018;9:2018.

    Google Scholar 

  2. Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ Sci Technol. 2016;50(19):10308–15. https://doi.org/10.1021/acs.est.6b03338.

    Article  CAS  PubMed  Google Scholar 

  3. Kalberlah F, Oltmanns J, Schwarz M, Baumeister J, Striffler A. Guidance for the precautionary protection of raw water destined for drinking water extraction from contaminants regulated under REACH. UFOPLAN Project FKZ 371265416. 2014.

  4. Bieber S, Greco G, Grosse S, Letzel T. RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal Chem. 2017;89(15):7907–14. https://doi.org/10.1021/acs.analchem.7b00859.

    Article  CAS  PubMed  Google Scholar 

  5. Trautwein C, Berset J-D, Wolschke H, Kümmerer K. Occurrence of the antidiabetic drug metformin and its ultimate transformation product guanylurea in several compartments of the aquatic cycle. Environ Int. 2014;70:203–12. https://doi.org/10.1016/j.envint.2014.05.008.

    Article  CAS  PubMed  Google Scholar 

  6. ChemAxon. https://chemicalize.com/. Accessed September 2019.

  7. Scheurer M, Nödler K, Freeling F, Janda J, Happel O, Riegel M, et al. Small, mobile, persistent: trifluoroacetate in the water cycle – overlooked sources, pathways, and consequences for drinking water supply. Water Res. 2017;126:460–71. https://doi.org/10.1016/j.watres.2017.09.045.

    Article  CAS  PubMed  Google Scholar 

  8. EuropeanCommission (2018) Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the quality of water intended for human consumption (recast). 2017/0332(COD). Brussels.

  9. Schulze S, Zahn D, Montes R, Rodil R, Quintana JB, Knepper TP, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 2019;153:80–90. https://doi.org/10.1016/j.watres.2019.01.008.

    Article  CAS  PubMed  Google Scholar 

  10. Montes R, Aguirre J, Vidal X, Rodil R, Cela R, Quintana JB. Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography–high resolution mass spectrometry. Environ Sci Technol. 2017;51(11):6250–9. https://doi.org/10.1021/acs.est.6b05135.

    Article  CAS  PubMed  Google Scholar 

  11. Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol. 2015;49(20):12333–41. https://doi.org/10.1021/acs.est.5b03454.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang K, Liu X. Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J Pharm Biomed Anal. 2016;128:73–88. https://doi.org/10.1016/j.jpba.2016.05.007.

    Article  CAS  PubMed  Google Scholar 

  13. McCalley DV. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J Chromatogr A. 2017;1523:49–71. https://doi.org/10.1016/j.chroma.2017.06.026.

    Article  CAS  PubMed  Google Scholar 

  14. Alpert AJ. Effect of salts on retention in hydrophilic interaction chromatography. J Chromatogr A. 2018;1538:45–53. https://doi.org/10.1016/j.chroma.2018.01.038.

    Article  CAS  PubMed  Google Scholar 

  15. Teutenberg T, Tuerk J, Holzhauser M, Kiffmeyer TK (2006) Evaluation of column bleed by using an ultraviolet and a charged aerosol detector coupled to a high-temperature liquid chromatographic system. J Chromatogr A 1119 (1):197–201. doi:https://doi.org/10.1016/j.chroma.2005.12.011.

  16. Wells GJ. Charge control for ionic charge accumulation devices. US Patent No. 2009;7:629,575.

    Google Scholar 

  17. Time-of-flight mass spectrometry - technical overview (2011). Agilent Technologie, Inc., USA.

  18. Scherrer RA, Howard SM. Use of distribution coefficients in quantitative structure-activity relations. J Med Chem. 1977;20(1):53–8. https://doi.org/10.1021/jm00211a010.

    Article  CAS  PubMed  Google Scholar 

  19. Arp HPH, Brown TN, Berger U, Hale SE. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environ Sci Process Impacts. 2017;19(7):939–55. https://doi.org/10.1039/C7EM00158D.

    Article  CAS  PubMed  Google Scholar 

  20. Nödler K, Happel O, Scheurer M, Storck FR, Brauch H-J (2018) Selektion von für die Wasserversorgung relevanten prioritären Stoffen und Erarbeitung einer Stoffliste. DVGW Deutscher Verein des Gas- und Wasserfaches e. V., Bonn.

  21. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017–31. https://doi.org/10.1007/s00216-007-1486-6.

    Article  CAS  PubMed  Google Scholar 

  22. Ipsen A, Ebbels TMD. Orders of magnitude extension of the effective dynamic range of TDC-based TOFMS data through maximum likelihood estimation. J Am Soc Mass Spectrom. 2014;25(10):1824–7. https://doi.org/10.1007/s13361-014-0961-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lagerwerf FM, van Dongen WD, Steenvoorden RJJM, Honing M, Jonkman JHG. Exploring the boundaries of bioanalytical quantitative LC–MS–MS. Trends Anal Chem. 2000;19(7):418–27. https://doi.org/10.1016/S0165-9936(00)00009-1.

    Article  CAS  Google Scholar 

  24. Zimmer D. Introduction to quantitative liquid chromatography-tandem mass spectrometry (LC-MS-MS). Chromatographia. 2003;57(1):S325–32. https://doi.org/10.1007/BF02492124.

    Article  Google Scholar 

  25. Funke J, Valkov V, Balsaa P, Schmidt TC Amidosulfonsäure - Quantifizierung eines kleinen, hochpolaren Moleküls mit Reversed-Phase-LC-MS-MS. Poster Jahrestagung der Wasserchemischen Gesellschaft 2019, Erfurt 27 - 29 Mai 2019 ISBN 978-3-947197-11-8.

  26. Boulard L, Dierkes G, Ternes T. Utilization of large volume zwitterionic hydrophilic interaction liquid chromatography for the analysis of polar pharmaceuticals in aqueous environmental samples: benefits and limitations. J Chromatogr A. 2018;1535:27–43. https://doi.org/10.1016/j.chroma.2017.12.023.

    Article  CAS  PubMed  Google Scholar 

  27. Mihailova A, Lundanes E, Greibrokk T. Determination and removal of impurities in 2-D LC-MS of peptides. J Sep Sci. 2006;29(4):576–81. https://doi.org/10.1002/jssc.200500496.

    Article  CAS  PubMed  Google Scholar 

  28. Meier F, Geyer PE, Virreira Winter S, Cox J, Mann M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat Methods. 2018;15(6):440–8. https://doi.org/10.1038/s41592-018-0003-5.

    Article  CAS  PubMed  Google Scholar 

  29. Keller BO, Sui J, Young AB, Whittal RM. Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta. 2008;627(1):71–81. https://doi.org/10.1016/j.aca.2008.04.043.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Seitz.

Additional information

Published in the topical collection Persistent and Mobile Organic Compounds – An Environmental Challenge with guest editors Torsten C. Schmidt, Thomas P. Knepper, and Thorsten Reemtsma.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, B., Bader, T., Seitz, W. et al. Column bleed in the analysis of highly polar substances: an overlooked aspect in HRMS. Anal Bioanal Chem 412, 4837–4847 (2020). https://doi.org/10.1007/s00216-020-02387-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02387-0

Keywords

Navigation