Skip to main content
Log in

Nd-Mg-Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To improve the electrochemical kinetics of Nd-Mg-Ni alloy electrodes, the alloy surface was modified with highly conductive reduced graphene oxide (rGO) via a chemical reduction process. Results indicated that rGO sheets uniformly coated on the alloy surface, yielding a three-dimensional network layer. The coated surfaces contained numerous hydrophilic functional groups, leading to better wettability of the alloy in aqueous alkaline media. This, in turn, increased the concentration of electro-active species at the interface between the electrode and the electrolyte, improving the electrochemical kinetics and the rate discharge of the electrodes. The high rate dischargeability at 1500 mA·g−1 increased from 53.2% to 83.9% after modification. In addition, the modification layer remained stable and introduced a dense metal oxide layer to the alloy surface after a long cycling process. Therefore, the protective layer prevented the discharge capacity from quickly decreasing and improved cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhang, G.J. Shao, W.W. Guo, Y.W. Lou, and B.J. Xia, Estimating the state of charge of MH-Ni batteries by measuring their stable internal pressure, J. Power Sources, 343(2017), p. 183.

    Article  CAS  Google Scholar 

  2. W.C.M. de Oliveira, G.D. Rodrigues, A.B. Mageste, and L.R. de Lemos, Green selective recovery of lanthanum from Ni-MH battery leachate using aqueous two-phase systems, Chem. Eng. J., 322(2017), p. 346.

    Article  Google Scholar 

  3. L.A. Benavides, D.J. Cuscueta, H. Troiani, A.A. Ghilarducci, and H.R. Salva, Effect of carbon nanotubes purification in the performance of a negative electrode of a Ni/MH battery, Int. J. Hydrogen Energy, 39(2014), No. 16, p. 8841.

    Article  CAS  Google Scholar 

  4. L.Z. Ouyang, J.L. Huang, H. Wang, J.W. Liu, and M. Zhu, Progress of hydrogen storage alloys for Ni-MH re-chargeable power batteries in electric vehicles: A review, Mater. Chem. Phys., 200(2017), p. 164.

    Article  CAS  Google Scholar 

  5. G.H. Ağaoğlu and G. Orhan, Production and electrochemical characterization of MgNi alloys by molten salt electrolysis for Ni-MH batteries, Int. J. Hydrogen Energy, 43(2018), No. 12, p. 6266.

    Article  Google Scholar 

  6. Y.F. Liu, Y.H. Cao, L. Huang, M.X. Gao, and H.G. Pan, Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries, J. Alloys Compd., 509(2011), No. 3, p. 675.

    Article  CAS  Google Scholar 

  7. X. Tian, G. Yun, H.Y. Wang, T. Shang, Z.Q. Yao, W. Wei, and X.X. Liang, Preparation and electrochemical properties of La-Mg-Ni-based La0.75Mg0.25Ni3.3Co0.5 multiphase hydrogen storage alloy as negative material of Ni/MH battery, Int. J. Hydrogen Energy, 39(2014), No. 16, p. 8474.

    Article  CAS  Google Scholar 

  8. Y.M. Zhao, S.M. Han, Y. Li, J.J. Liu, L. Zhang, S.Q. Yang, J. Cao, and Z.R. Jia, Structural phase transformation and electrochemical features of La-Mg-Ni-based AB4-type alloys, Electrochim. Acta, 215(2016), p. 142.

    Article  CAS  Google Scholar 

  9. J.G. Yuan, W. Li, and Y. Wu, Hydrogen storage and low-temperature electrochemical performances of A2B7 type La-Mg-Ni-Co-Al-Mo alloys, Prog. Nat. Sci., 27(2017), No. 2, p. 169.

    Article  CAS  Google Scholar 

  10. Y.F. Liu, H.G. Pan, M.X. Gao, and Q.D. Wang, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries, J. Mater. Chem., 21(2011), p. 4743.

    Article  CAS  Google Scholar 

  11. S. Ma, M.X. Gao, R. Li, H.G. Pan, and Y.Q. Lei, A study on the structural and electrochemical properties of La0.7-xNdxMg0.3Ni2.45Co0.75Mn0.1Al0.2(x=0.0-3.0) hydrogen storage alloys, J. Alloys Compd., 457(2008), No. 1–2, p. 457.

    Article  CAS  Google Scholar 

  12. Y. Li, S.M. Han, J.H. Li, X.L. Zhu, and L. Hu, The effect of Nd content on the electrochemical properties of low-Co La-Mg-Ni-based hydrogen storage alloys, J. Alloys Compd., 458(2008), No. 1–2, p. 357.

    Article  CAS  Google Scholar 

  13. Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86.

    Article  Google Scholar 

  14. S.Q. Yang, H.P. Liu, S.M. Han, Y. Li, and W.Z. Shen, Effects of electroless composite plating Ni-Cu-P on the electrochemical properties of La-Mg-Ni-based hydrogen storage alloy, Appl. Surf. Sci., 271(2013), p. 210.

    Article  CAS  Google Scholar 

  15. B.P. Wang, L.M. Zhao, C.S. Cai, and S.X. Wang, Effects of surface coating with polyaniline on electrochemical properties of La-Mg-Ni-based electrode alloys, Int. J. Hydrogen Energy, 39(2014), No. 20, p. 10374.

    Article  CAS  Google Scholar 

  16. Y. Li, Y. Tao, D.D. Ke, Y.F. Ma, and S.M. Han, Electrochemical kinetic performances of electroplating Co-Ni on La-Mg-Ni-based hydrogen storage alloys, Appl. Surf. Sci., 357(2015), p. 1714.

    Article  CAS  Google Scholar 

  17. M. Dymek, M. Nowak, M. Jurczyk, and H. Bala, Encapsulation of La1.5Mg0.5Ni7 nanocrystalline hydrogen storage alloy with Ni coatings and its electrochemical characterization, J. Alloys Compd., 749(2018), p. 534.

    Article  CAS  Google Scholar 

  18. L.L. Xiao, Y.J. Wang, Y. Liu, D.W. Song, L.F. Jiao, and H.T. Yuan, Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3Ni2.4Co0.6 hydrogen-storage alloy, Int. J. Hydrogen Energy, 33(2008), No. 14, p. 3925.

    Article  CAS  Google Scholar 

  19. A. Matsuyama, H. Mizutani, T. Kozuka, and H. Inoue, Effect of surface treatment with boiling alkaline solution on electrochemical properties of the ZrNi alloy electrode, Int. J. Hydrogen Energy, 41(2016), No. 23, p. 9908.

    Article  CAS  Google Scholar 

  20. W.H. Zhou, Z.Y. Tang, D. Zhu, Z.W. Ma, C.L. Wu, L.W. Huang, and Y.G. Chen, Low-temperature and instantaneous high-rate output performance of AB5-type hydrogen storage alloy with duplex surface hot-alkali treatment, J. Alloys Compd., 692(2017), p. 364.

    Article  CAS  Google Scholar 

  21. R.C. Cui, C.C. Yang, M.M. Li, B. Jin, X.D. Ding, and Q. Jiang, Enhanced high-rate performance of ball-milled MmNi3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys with graphene nanoplatelets, J. Alloys Compd., 693(2017), p. 126.

    Article  CAS  Google Scholar 

  22. L.J. Huang, W. Y.X. Wang, H. Zhen, J.G. Tang, W. Yao, L. J.X. Liu, J. J.Q. Liu, L. J.Q. Liu, and L.A. Belfiore, Effects of graphene/silver nanohybrid additives on electrochemical properties of magnesium-based amorphous alloy, J. Power Sources, 269(2014), p. 716.

    Article  CAS  Google Scholar 

  23. L.J. Huang, Y.X. Wang, J.G. Tang, Y. Wang, J.X. Liu, Z. Huang, J.Q. Jiao, W. Wang, M.J. Kipper, and L. A. Belfiroe, A new graphene nanocomposite to improve the electrochemical properties of magnesium-based amorphous alloy, Mater. Lett., 160(2015), p. 104.

    Article  CAS  Google Scholar 

  24. N. Li, Y. Du, Q.P. Feng, G.W. Huang, H.M. Xiao, and S.Y. Fu, A novel type of battery-supercapacitor hybrid device with highly switchable dual performances based on a carbon skeleton/Mg2Ni free-standing hydrogen storage electrode, ACS Appl. Mater. Interfaces, 9(2017), No. 51, p. 44828.

    Article  CAS  Google Scholar 

  25. Z.Q. Lan, K. Zeng, B. Wei, G.X. Li, H. Ning, and J. Guo, Nickel-graphene nanocomposite with improved electrochemical performance for La0.7Mg0.3(Ni0.85Co0.15)3.5 electrode, Int. J. Hydrogen Energy, 42(2017), No. 17, p. 12458.

    Article  CAS  Google Scholar 

  26. J. Zhang, H. Qu, S. Yan, L. R. Yin, and D.W. Zhou, Dehydrogenation properties and mechanisms of MgH2-NiCl2 and MgH2-NiCl2-graphene hydrogen storage composites, Met. Mater. Int., 23(2017), No. 4, p. 831.

    Article  CAS  Google Scholar 

  27. Z.Q. Lan, Z.Z. Sun, Y.C. Ding, N. Hua, W.L. Wei, and G. Jin, Catalytic action of Y2O3@graphene nanocomposite on the hydrogen-storage property of Mg-Al alloy, J. Mater. Chem. A, 5(2017), No. 29, p. 15200.

    Article  CAS  Google Scholar 

  28. H.J. Wu, Z.Z. Sun, J.Q. Du, H. Ning, G.X. Li, W.L. Wei, Z.Q. Lan, and J. Guo, Catalytic effect of graphene on the hydrogen storage properties of Mg-Li alloy, Mater. Chem. Phys., 207(2018), p. 221.

    Article  CAS  Google Scholar 

  29. J. Chen, Y.R. Li, L. Huang, C. Li, and G.Q. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process, Carbon, 81(2015), p. 826.

    Article  CAS  Google Scholar 

  30. M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martinez-Alonso, and J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C, 114(2010), No. 14, p. 6426.

    Article  Google Scholar 

  31. Y. Li, C.X. Wang, Z.T. Dong, J. Wang, S.Q. Yang, D.D. Ke, and S.M. Han, Effects of coating layers on electrochemical properties of Nd-Mg-Ni-based alloys, Int. J. Hydrogen Energy, 42(2017), No. 30, p. 19148.

    Article  CAS  Google Scholar 

  32. H. Miao, M.X. Gao, Y.F. Liu, D. Zhu, and H.G. Pan, An improvement on cycling stability of Ti-V-Fe-based hydrogen storage alloys with Co substitution for Ni, J. Power Sources, 184(2008), No. 2, p. 627.

    Article  CAS  Google Scholar 

  33. Y.F. Zhu, H.G. Pan, M.X. Gao, Y.F. Liu, and Q.D. Wang, Influence of annealing treatment on Laves phase compound containing a V-based BCC solid solution phase-Part II: Electrochemical properties, Int. J. Hydrogen Energy, 28(2003), No. 4, p. 395.

    Article  CAS  Google Scholar 

  34. N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, and T. Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd., 202(1993), No. 1–2, p. 183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NOs. 21303157 and 51771164), the Natural Science Foundation of Hebei Province (No. E2019203161), and Scientific Research Projects in Colleges and Universities in Hebei Province (No. QN2016002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-min Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cheng, Ln., Miao, Wk. et al. Nd-Mg-Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics. Int J Miner Metall Mater 27, 391–400 (2020). https://doi.org/10.1007/s12613-019-1880-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1880-z

Keywords

Navigation