Skip to main content
Log in

Facile preparation of ZnO nanostructured thin films via oblique angle ultrasonic mist vapor deposition (OA-UMVD): a systematic investigation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrasonic mist vapor deposition (UMVD) is a widely used facile technique to prepare ZnO thin films. The surface properties of prepared thin films can be tuned via easily controllable UMVD deposition parameters. Herein, we utilized an oblique angle (OA) geometry in UMVD system named as OA-UMVD. The angle between incident flow and substrate (θs) was changed from 0° to 45°. Alteration of θs as well as substrate temperature (Ts) resulted in the deposition of ZnO thin films with different morphologies. For mild nozzle–substrate distance (D = 3 cm), fine vertical ZnO nanosheets with length of 123 nm and thickness of 23 nm were obtained for low Ts (330 °C) and small θs (≈ 0°). By increasing both Ts and θs, ZnO nanorods gradually appeared on the surface. Both nozzle–substrate distance (D) and Ts showed similar effect on deposition rate (Rd), and Rd decreased by increase of D and Ts, while deposition rate increased for larger θs. Confocal microscopy results revealed that using low Ts (330 °C), short distance (D = 1.5 cm) and large θs (45°) resulted in high macroscopic surface roughness (MRs) of 98 nm, while high Ts (500 °C), long D (5 cm) and small θs (≈ 0) created compact and smooth surface with low MRs of 5 nm, in accordance with transmittance results. The ZnO wurtzite crystal structure was approved via X-ray diffraction patterns. The crystallite size in the layers was affected only by Ts, and θs had no significant effect on the layers’ crystallinity. Obtaining different ZnO nanostructures with different MRs via easily and accurately controllable growth parameters is a great advantage for our employed OA-UMVD system, which could be used to prepare ZnO thin films with desired morphologies for widespread application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, J. Jang, H. Zare, Mater. Chem. Phys. 204, 262 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.051

    Article  Google Scholar 

  2. Y. Al-Douri, A.J. Haider, A.H. Reshak, A. Bouhemadou, M. Ameri, Optik 127(20), 10102 (2016). https://doi.org/10.1016/j.ijleo.2016.08.012

    Article  ADS  Google Scholar 

  3. M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A.Z. Moshfegh, Res. Chem. Intermed. 45(4), 2197 (2019). https://doi.org/10.1007/s11164-018-03729-5

    Article  Google Scholar 

  4. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

    Article  ADS  Google Scholar 

  5. P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Nano 5(6), 5158 (2011)

    Article  Google Scholar 

  6. F. Benosman, Z. Dridi, Y. Al-Douri, B. Bouhafs, Int. J. Mod. Phys. B 30(31), 1650225 (2016). https://doi.org/10.1142/s0217979216502258

    Article  ADS  Google Scholar 

  7. W. Zhang, S. Chang, S. Yao, H. Wang, J. Electron. Mater. 48(8), 4895 (2019). https://doi.org/10.1007/s11664-019-07278-4

    Article  ADS  Google Scholar 

  8. M. Ahmadi, M. Shafiey Dehaj, S. Ghazanfarpour, S. Ghazanfarpour, Appl. Phys. A 125(9), 604 (2019). https://doi.org/10.1007/s00339-019-2882-4

    Article  ADS  Google Scholar 

  9. F. Liu, X. Chen, X. Wang, Y. Han, X. Song, J. Tian, X. He, H. Cui, Sens. Actuators B Chem. 291, 155 (2019). https://doi.org/10.1016/j.snb.2019.04.009

    Article  Google Scholar 

  10. F. Khosravi-Nejad, M. Teimouri, S. Jafari Marandi, M. Shariati, Appl. Phys. A 125(9), 616 (2019). https://doi.org/10.1007/s00339-019-2890-4

    Article  ADS  Google Scholar 

  11. N.N. Jandow, A.K. Elttayef, A.F. Majied, N.F. Habubi, N. Saadeddin, Y. Al-Douri, A.I.P. Conf, Proc. 2083(1), 020003 (2019). https://doi.org/10.1063/1.5094306

    Article  Google Scholar 

  12. N.K. Hassan, M.R. Hashim, Y. Al-Douri, Optik 125(11), 2560 (2014). https://doi.org/10.1016/j.ijleo.2013.10.023

    Article  ADS  Google Scholar 

  13. M. Zirak, O. Akhavan, O. Moradlou, Y.T. Nien, A.Z. Moshfegh, J. Alloys Compd. 590, 507 (2014). https://doi.org/10.1016/j.jallcom.2013.12.158

    Article  Google Scholar 

  14. M. Zirak, O. Moradlou, M.R. Bayati, Y.T. Nien, A.Z. Moshfegh, Appl. Surf. Sci. 273, 391 (2013). https://doi.org/10.1016/j.apsusc.2013.02.050

    Article  ADS  Google Scholar 

  15. M. Zirak, H. Oveisi, J. Lin, Y. Bando, A.A. Alshehri, J. Kim, Y. Ide, M.S.A. Hossain, V. Malgras, Y. Yamauchi, Bull. Chem. Soc. Jpn. 91(10), 1556 (2018). https://doi.org/10.1246/bcsj.20180108

    Article  Google Scholar 

  16. C. Ma, Z. Liu, Z. Tong, C. Han, Q. Cai, Appl. Phys. A 125(7), 451 (2019). https://doi.org/10.1007/s00339-019-2742-2

    Article  ADS  Google Scholar 

  17. H. Alehdaghi, M. Marandi, A. Irajizad, N. Taghavinia, Org. Electron. 16, 87 (2015). https://doi.org/10.1016/j.orgel.2014.10.038

    Article  Google Scholar 

  18. J.F.S. Fernando, C. Zhang, K.L. Firestein, J.Y. Nerkar, D.V. Golberg, J. Mater. Chem. A 7(14), 8460 (2019). https://doi.org/10.1039/C8TA12511B

    Article  Google Scholar 

  19. H. Sun, S.-C. Chen, C.-H. Wang, Y.-W. Lin, C.-K. Wen, T.-H. Chuang, X. Wang, S.-S. Lin, M.-J. Dai, Surf. Coat. Technol. 359, 390 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.105

    Article  Google Scholar 

  20. A. Mameli, B. Karasulu, M.A. Verheijen, B. Barcones, B. Macco, A.J.M. Mackus, W.M.M.E. Kessels, F. Roozeboom, Chem. Mater. 31(4), 1250 (2019). https://doi.org/10.1021/acs.chemmater.8b03165

    Article  Google Scholar 

  21. C.-Q. Luo, F.C.-C. Ling, M.A. Rahman, M. Phillips, C. Ton-That, C. Liao, K. Shih, J. Lin, H.W. Tam, A.B. Djurišić, S.-P. Wang, Appl. Surf. Sci. 483, 1129 (2019). https://doi.org/10.1016/j.apsusc.2019.03.228

    Article  ADS  Google Scholar 

  22. R. Bhujel, S. Rai, B.P. Swain, Mater. Sci. Semicond. Process. 102, 104592 (2019). https://doi.org/10.1016/j.mssp.2019.104592

    Article  Google Scholar 

  23. R. Al-Gaashani, S. Radiman, A. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39(3), 2283 (2013)

    Article  Google Scholar 

  24. P. Steiger, J. Zhang, K. Harrabi, I.A. Hussein, J.M. Downing, M.A. McLachlan, Thin Solid Films 645, 417 (2018). https://doi.org/10.1016/j.tsf.2017.11.021

    Article  ADS  Google Scholar 

  25. M. Pérez-González, S.A. Tomás, J. Santoyo-Salazar, S. Gallardo-Hernández, M.M. Tellez-Cruz, O. Solorza-Feria, J. Alloys Compd. 779, 908 (2019). https://doi.org/10.1016/j.jallcom.2018.11.302

    Article  Google Scholar 

  26. M. Kashif, Y. Al-Douri, U. Hashim, M. Ali, S. Ali, M. Willander, Micro. Nano Lett. 7(2), 163 (2012)

    Google Scholar 

  27. K. Gherab, Y. Al-Douri, C.H. Voon, U. Hashim, M. Ameri, A. Bouhemadou, Result Phys. 7, 1190 (2017). https://doi.org/10.1016/j.rinp.2017.03.013

    Article  ADS  Google Scholar 

  28. N. Hassan, M. Hashim, Y. Al-Douri, K. Al-Heuseen, Int. J. Electrochem. Sci. 7, 4625 (2012)

    Google Scholar 

  29. Y.J. Onofre, A.C. Catto, S. Bernardini, T. Fiorido, K. Aguir, E. Longo, V.R. Mastelaro, L.F. da Silva, M.P.F. de Godoy, Appl. Surf. Sci. 478, 347 (2019). https://doi.org/10.1016/j.apsusc.2019.01.197

    Article  ADS  Google Scholar 

  30. H. Alehdaghi, M. Zirak, J. Mater. Sci. Mater. Electron. 30(3), 2706 (2019). https://doi.org/10.1007/s10854-018-0546-3

    Article  Google Scholar 

  31. S. Benramache, Y. Aoun, A. Charef, B. Benhaoua, S. Lakel, Inorg. Nano–Micro Chem. 49(6), 177 (2019). https://doi.org/10.1080/24701556.2019.1624568

    Article  Google Scholar 

  32. Y. Kamada, T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 45(32), L857 (2006). https://doi.org/10.1143/jjap.45.l857

    Article  ADS  Google Scholar 

  33. V. Mata, A. Maldonado, O.M. de la Luz, Mater. Sci. Semicond. Process. 75, 288 (2018). https://doi.org/10.1016/j.mssp.2017.11.038

    Article  Google Scholar 

  34. H. Tanoue, M. Takenouchi, T. Yamashita, S. Wada, Z. Yatabe, S. Nagaoka, Y. Naka, Y. Nakamura, Phys. Stat. Solid. A Appl. Mater. Sci. (2017). https://doi.org/10.1002/pssa.201600603

    Article  Google Scholar 

  35. H. Tanoue, T. Taniguchi, S. Wada, S. Yamamoto, S. Nakamura, Y. Naka, H. Yoshikawa, M. Munekata, S. Nagaoka, Y. Nakamura, Appl. Phys. Express (2015). https://doi.org/10.7567/apex.8.125502

    Article  Google Scholar 

  36. H.L. Ma, Z.W. Liu, D.C. Zeng, M.L. Zhong, H.Y. Yu, E. Mikmekova, Appl. Surf. Sci. 283, 1006 (2013). https://doi.org/10.1016/j.apsusc.2013.07.060

    Article  ADS  Google Scholar 

  37. K. Takenaka, Y. Okumura, Y. Setsuhara, Jpn. J. Appl. Phys. (2013). https://doi.org/10.7567/jjap.52.01ac11

    Article  Google Scholar 

  38. K. Takenaka, Y. Okumura, Y. Setsuhara, Jpn. J. Appl. Phys. (2012). https://doi.org/10.1143/jjap.51.08hf05

    Article  Google Scholar 

  39. E. Gungor, T. Gungor, Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/594971

    Article  Google Scholar 

  40. S. Edinger, J. Bekacz, M. Richter, R. Hamid, R.A. Wibowo, A. Peic, T. Dimopoulos, Thin Solid Films 594, 238 (2015). https://doi.org/10.1016/j.tsf.2015.04.027

    Article  ADS  Google Scholar 

  41. J. Cheng, R. Hu, Q. Wang, C.X. Zhang, Z. Xie, Z.W. Long, X. Yang, L. Li, Int. J. Photoenergy (2015). https://doi.org/10.1155/2015/201472

    Article  Google Scholar 

  42. J.H. Min, X.Y. Liang, B. Wang, Y. Zhao, Y. Guo, L.J. Wang, Adv. Mater. Res. 299–300, 475 (2011). https://doi.org/10.4028/www.scientific.net/AMR.299-300.475

    Article  Google Scholar 

  43. E. Emil, G. Alkan, S. Gurmen, R. Rudolf, D. Jenko, B. Friedrich, Metals (2018). https://doi.org/10.3390/met8080569

    Article  Google Scholar 

  44. W.G. Yang, Z. Yang, D. Li, X.Y. Zhang, Z.L. Zhou, S. Tian, Y.Q. Tong, C.H. Xia, M. Liu, L. Li, F. Wang, Mod Phys Lett B (2018). https://doi.org/10.1142/s0217984918503517

    Article  Google Scholar 

  45. N. Zebbar, M. Trari, M. Doulache, A. Boughelout, L. Chabane, Appl. Surf. Sci. 292, 837 (2014). https://doi.org/10.1016/j.apsusc.2013.12.059

    Article  ADS  Google Scholar 

  46. H. In Sub, P. Il-Kyu, Korean J Mater Res 27(11), 609 (2017)

    Article  Google Scholar 

  47. A.J. Wang, H. Chen, T.F. Chen, Z.L. Wu, Y.L. Li, Y.S. Wang, J. Nanosci. Nanothech. 14(5), 3804 (2014). https://doi.org/10.1166/jnn.2014.7952

    Article  Google Scholar 

  48. S. Benramache, B. Benhaoua, F. Chabane, A. Guettaf, Optik 124(18), 3221 (2013). https://doi.org/10.1016/j.ijleo.2012.10.001

    Article  ADS  Google Scholar 

  49. N. Zebbar, Y. Kheireddine, K. Mokeddem, A. Hafdallah, M. Kechouane, M.S. Aida, Mater. Sci. Semicond. Process. 14(3–4), 229 (2011). https://doi.org/10.1016/j.mssp.2011.03.001

    Article  Google Scholar 

  50. X. Zhao, J. Cheng, J. Mater. Sci. Mater. Electron. 27(3), 2676 (2016). https://doi.org/10.1007/s10854-015-4076-y

    Article  Google Scholar 

  51. C. Biswas, Z. Ma, X.D. Zhu, T. Kawaharamura, K.L. Wang, Sol. Energy Mater. Sol. Cells 157, 1048 (2016). https://doi.org/10.1016/j.solmat.2016.08.022

    Article  Google Scholar 

  52. H.-J. Jeon, S.-G. Lee, K.-S. Shin, S.-W. Kim, J.-S. Park, J. Alloys Compd. 614, 244 (2014)

    Article  Google Scholar 

  53. S. Jongthammanurak, M. Witana, T. Cheawkul, C. Thanachayanont, Mater. Sci. Semicond. Process. 16(3), 625 (2013). https://doi.org/10.1016/j.mssp.2012.11.009

    Article  Google Scholar 

  54. M.T. Htay, Y. Tani, Y. Hashimoto, K. Ito, J. Mater. Sci. Mater. Electron. 20, 341 (2009). https://doi.org/10.1007/s10854-008-9613-5

    Article  Google Scholar 

  55. P. Singh, A. Kumar, Deepak, D. Kaur, J. Cryst. Growth 306(2), 303 (2007) https://doi.org/10.1016/j.jcrysgro.2007.05.023

  56. Z.K. Zhang, J.M. Bian, J.C. Sun, X.W. Ma, Y.X. Wang, C.H. Cheng, Y.M. Luo, H.Z. Liu, Mater. Res. Bull. 47(9), 2685 (2012). https://doi.org/10.1016/j.materresbull.2012.05.010

    Article  Google Scholar 

  57. K.H. Kim, K.S. Shin, B. Kumar, K.K. Kim, S.W. Kim, J. Nanoelectron. Optoelectron. 5(2), 247 (2010). https://doi.org/10.1166/jno.2010.1103

    Article  Google Scholar 

  58. K.P. Liu, B.F. Yang, H.W. Yan, Z.P. Fu, M.W. Wen, Y.J. Chen, J. Zuo, Appl. Surf. Sci. 255(5), 2052 (2008). https://doi.org/10.1016/j.apsusc.2008.06.203

    Article  ADS  Google Scholar 

  59. T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn. J. Appl. Phys. 47(6), 4669 (2008). https://doi.org/10.1143/jjap.47.4669

    Article  ADS  Google Scholar 

  60. L. Munoz-Fernandez, G. Alkan, O. Milosevic, M.E. Rabanal, B. Friedrich, Catal. Today 321, 26 (2019). https://doi.org/10.1016/j.cattod.2017.11.029

    Article  Google Scholar 

  61. M. Khammar, S. Guitouni, N. Attaf, M.S. Aida, A. Attaf, Ceram. Int. 43(13), 9919 (2017). https://doi.org/10.1016/j.ceramint.2017.04.179

    Article  Google Scholar 

  62. A. Gahtar, A. Rahal, B. Benhaoua, S. Benramache, Optik 125(14), 3674 (2014). https://doi.org/10.1016/j.ijleo.2014.01.078

    Article  ADS  Google Scholar 

  63. V.K. Jayaraman, A.M. Alvarez, M.D.O. Amador, Mater. Lett. 157, 169 (2015). https://doi.org/10.1016/j.matlet.2015.05.065

    Article  Google Scholar 

  64. G. Kenanakis, N. Katsarakis, E. Koudoumas, Thin Solid Films 555, 62 (2014). https://doi.org/10.1016/j.tsf.2013.10.015

    Article  ADS  Google Scholar 

  65. G. Kenanakis, N. Katsarakis, Mater. Res. Bull. 60, 752 (2014). https://doi.org/10.1016/j.materresbull.2014.09.060

    Article  Google Scholar 

  66. O. Dimitrov, D. Nesheva, V. Blaskov, I. Stambolova, S. Vassilev, Z. Levi, V. Tonchev, Mater. Chem. Phys. 148(3), 712 (2014). https://doi.org/10.1016/j.matchemphys.2014.08.039

    Article  Google Scholar 

  67. M.T. Htay, Y. Hashimoto, N. Momose, K. Ito, J. Cryst. Growth 311(20), 4499 (2009). https://doi.org/10.1016/j.jcrysgro.2009.08.008

    Article  ADS  Google Scholar 

  68. Y. Benkhetta, A. Attaf, H. Saidi, A. Bouhdjar, H. Benjdidi, I.B. Kherchachi, M. Nouadji, N. Lehraki, Optik 127(5), 3005 (2016). https://doi.org/10.1016/j.ijleo.2015.11.236

    Article  ADS  Google Scholar 

  69. Y. Aoun, B. Benhaoua, S. Benramache, B. Gasmi, Optik 126(20), 2481 (2015). https://doi.org/10.1016/j.ijleo.2015.06.025

    Article  ADS  Google Scholar 

  70. B. Wang, J.H. Min, Y. Zhao, W.B. Sang, C.J. Wang, Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3134486

    Article  Google Scholar 

  71. S. Sali, M. Boumaour, M. Kechouane, S. Kermadi, F. Aitamar, Phys. B Cond. Mater. 407(13), 2626 (2012). https://doi.org/10.1016/j.physb.2012.04.009

    Article  ADS  Google Scholar 

  72. K. Robbie, M.J. Brett, J. Vac. Sci. Thech. A 15(3), 1460 (1997). https://doi.org/10.1116/1.580562

    Article  ADS  Google Scholar 

  73. F. Ynineb, N. Attaf, M.S. Aida, J. Bougdira, Y. Bouznit, H. Rinnert, Thin Solid Films 628, 36 (2017). https://doi.org/10.1016/j.tsf.2017.02.044

    Article  ADS  Google Scholar 

  74. O. Gracia-Martinez, R.M. Rojas, E. Vila, J.L. Martin de Vidales, Solid State Ionics 63, 442 (1993)

    Article  Google Scholar 

  75. Y. Zhao, D. Ye, G.-C. Wang, T.-M. Lu, Designing nanostructures by glancing angle deposition. SPIE (2003)

  76. Y.E. Lee, S.G. Kim, Y.J. Kim, H.J. Kim, J. Vac. Sci. Thech. A 15(3), 1194 (1997). https://doi.org/10.1116/1.580592

    Article  ADS  Google Scholar 

  77. K. Robbie, M.J. Brett, A. Lakhtakia, Nature 384(6610), 616 (1996). https://doi.org/10.1038/384616a0

    Article  ADS  Google Scholar 

  78. A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, A. Al-Hilo, M.F. Cansizoglu, T.M. Demirkan, T. Karabacak, Thin Solid Films 589, 764 (2015). https://doi.org/10.1016/j.tsf.2015.06.058

    Article  ADS  Google Scholar 

  79. J. Chu, X. Peng, M. Sajjad, B. Yang, P.X. Feng, Thin Solid Films 520(9), 3493 (2012). https://doi.org/10.1016/j.tsf.2011.12.066

    Article  ADS  Google Scholar 

  80. T. Karabacak, G.-C. Wang, T.-M. Lu, J. Vac. Sci. Thech. A 22(4), 1778 (2004). https://doi.org/10.1116/1.1743178

    Article  ADS  Google Scholar 

  81. W. Tang, Preparation Principle, Technology and Application of Thin Film Materials (Metallurgical Industry Press, Beijing, 2003)

    Google Scholar 

  82. S.-H. Hu, Y.-C. Chen, C.-C. Hwang, C.-H. Peng, D.-C. Gong, J. Alloys Compd. 500(2), L17 (2010)

    Article  Google Scholar 

  83. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 12(5), 323 (2002)

    Article  Google Scholar 

  84. R.N. Tait, T. Smy, M.J. Brett, Thin Solid Films 226(2), 196 (1993). https://doi.org/10.1016/0040-6090(93)90378-3

    Article  ADS  Google Scholar 

  85. J.M. LaForge, M.T. Taschuk, M.J. Brett, Thin Solid Films 519(11), 3530 (2011). https://doi.org/10.1016/j.tsf.2011.01.241

    Article  ADS  Google Scholar 

  86. A. Barranco, A. Borras, A.R. Gonzalez-Elipe, A. Palmero, Prog. Mater. Sci. 76, 59 (2016). https://doi.org/10.1016/j.pmatsci.2015.06.003

    Article  Google Scholar 

Download references

Acknowledgement

The financial support of Research and Technology Council of the Hakim Sabzevari University is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zirak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alehdaghi, H., Kazemi, M. & Zirak, M. Facile preparation of ZnO nanostructured thin films via oblique angle ultrasonic mist vapor deposition (OA-UMVD): a systematic investigation. Appl. Phys. A 126, 103 (2020). https://doi.org/10.1007/s00339-020-3295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3295-0

Keywords

Navigation