Skip to main content

Advertisement

Log in

Rheological parameters and characteristics of bamboo in compression perpendicular to grain under hot-pressing process

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Bamboo with high specific strength is a renewable biomaterial. Studying the rheological properties of bamboo is helpful to improve the performance and quality of bamboo products. In this paper, four-element Burgers model was applied to describe the creep behavior of moso bamboo (Phyllostachs pubescens) in compression perpendicular to grain under hot-pressing process. The relationship between creep components and experimental factors (temperature, moisture content and stress level) was investigated. More importantly, four rheological parameters in Burgers model were also determined at different temperatures, moisture contents and stress levels. And the effect of experimental factors on rheological parameters was quantitatively explored. The results showed that, when compressive stress was below the yield limit, the amount of three components of creep was proportional to experimental factors, but the increase in temperature and moisture content could reduce the proportion of elastic deformation, and improve the proportion of viscoelastic deformation and viscous deformation. Besides, rheological parameters were insensitive to stress level when temperature and moisture content remained unchanged. But they were greatly affected by temperature and moisture content, presenting a linear inverse proportion to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bailey, W.J., Weir, I.S.: Investigation of methods for direct rheological model parameter estimation. J. Pet. Sci. Eng. 21(1–2), 1–13 (1998)

    Article  Google Scholar 

  • Blanchet, P., Gendron, G., Cloutier, A., Beauregard, R.: Numerical prediction of engineered wood flooring deformation. Wood Fiber Sci. J. Soc. Wood Sci. Technol. 37(3), 484–496 (2005)

    Google Scholar 

  • Chassagne, P., Bou-Saïd, E., Jullien, J., Galimard, P.: Three dimensional creep model for wood under variable humidity—numerical analyses at different material scales. Mech. Time-Depend. Mater. 9, 203–223 (2006)

    Google Scholar 

  • De Magistris, F., Salmén, L.: Mechanical behaviour of wet wood in sequences of compression and combined compression and shear. Nord. Pulp Pap. Res. J. 21(2), 231–236 (2006)

    Article  Google Scholar 

  • Dornyak, O.R.: Modeling of the rheological behavior of wood in compression processes. J. Eng. Phys. Thermophys. 76(3), 648–654 (2003)

    Article  Google Scholar 

  • Dubois, F., Randriambololona, H., Petit, C.: Creep in wood under variable climate conditions: numerical modeling and experimental validation. Mech. Time-Depend. Mater. 9(2–3), 173–202 (2005)

    Article  Google Scholar 

  • Fortino, S., Mirianon, F., Toratti, T.: A 3d moisture-stress fem analysis for time dependent problems in timber structures. Mech. Time-Depend. Mater. 13(4), 333–356 (2009)

    Article  Google Scholar 

  • Fortino, S., Hradil, P., Salminen, L.I., De Magistris, F.: A 3D micromechanical study of deformation curves and cell wall stresses in wood under transverse loading. J. Mater. Sci. 50(1), 482–492 (2015)

    Article  Google Scholar 

  • Fukuta, S., Takasu, Y., Sasaki, Y., Hirashima, Y.: Compressive deformation process of Japanese cedar (cryptomeria japonica). Wood Fiber Sci. J. Soc. Wood Sci. Technol. 39(4), 548–555 (2007)

    Google Scholar 

  • Gao, H., Wang, F.L., Shao, Z.P.: Study on the rheological model of Xuan paper. Wood Sci. Technol. 50(2), 427–440 (2016)

    Article  Google Scholar 

  • Gao, H., Song, Y.M., Wang, Q.W., et al.: Rheological and mechanical properties of wood fiber-PP/PE blend composites. J. For. Res. (English edition) 19(4), 315–318 (2008)

    Google Scholar 

  • Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Hanhijärvi, A., Mackenzie-Helnwein, P.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. I: Orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. J. Eng. Mech. 129(9), 996–1005 (2003)

    Article  Google Scholar 

  • Haque, M.N., Tag, L., Keep, L.B., et al.: Model fitting for visco-elastic creep of Pinus radiata during kiln drying. Wood Sci. Technol. 34(5), 447–457 (2000)

    Article  Google Scholar 

  • Hassani, M.M., Wittel, F.K., Hering, S., et al.: Rheological model for wood. Comput. Methods Appl. Mech. Eng. 28, 1032–1060 (2015)

    Article  Google Scholar 

  • Huc, S., Hozjan, T., Svensson, S.: Rheological behavior of wood in stress relaxation under compression. Wood Sci. Technol. 52, 793–808 (2018)

    Article  Google Scholar 

  • Jain, S.K., Kurhekar, S.P., Kothe, S.: Effect of dimensions of bamboo on their strength properties. Int. J. Agric. Eng. 8(2), 215–219 (2015)

    Google Scholar 

  • Kamke, F.A., Kutnar, A.: Influence of stress level on compression deformation of wood in 170 °C transient steam conditions. Wood Mat. Sci. Eng. 6(3), 105–111 (2011)

    Article  Google Scholar 

  • Khechiba, K., Mamou, M., Hachemi, M., et al.: Effect of Carreau–Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid. Phys. Fluids 29(6), 508–521 (2017)

    Article  Google Scholar 

  • Kúdela, J., Rousek, R., Rademacher, P., Rešetka, M., Dejmal, A.: Influence of pressing parameters on dimensional stability and density of compressed beech wood. Eur. J. Wood Prod. 76, 1241–1252 (2018)

    Article  Google Scholar 

  • Lewandowski, K., Piszczek, K., Zajchowski, S., et al.: Rheological properties of wood polymer composites at high shear rates. Polym. Test. 51, 58–62 (2016)

    Article  Google Scholar 

  • Mackenzie-Helnwein, P., Hanhijärvi, A.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. II: Algorithmic aspects and practical application. J. Eng. Mech. 129(9), 1006–1016 (2003)

    Article  Google Scholar 

  • Melo, R.R.D., Cláudio, H.S.D.M.: Rheological behavior of wood and wood based materials. Rev. Ciênc. Da Madeira 1(1), 25–40 (2010)

    Article  Google Scholar 

  • Moutee, M., Fortin, Y., Fafard, M.: A global rheological model of wood cantilever as applied to wood drying. Wood Sci. Technol. 41(3), 209–234 (2007)

    Article  Google Scholar 

  • Moutee, M., Fafard, M., Fortin, Y., Laghdir, A.: Modeling the creep behavior of wood cantilever loaded at free end during drying. Wood Fiber Sci. 37(3), 521–534 (2005)

    Google Scholar 

  • Pearson, R.G.: Time dependent properties. In: Oliver, J.F. (ed.) Adhesion in Cellulosic and Wood-Based Composites. NATO Conference Series (Series VI: Materials Science), vol. 3. Springer, Boston, MA (1981)

    Google Scholar 

  • Ranta-Maunus, A.: Rheological behavior of wood in directions perpendicular to the grain. Mater. Struct. 26(6), 362–369 (1993)

    Article  Google Scholar 

  • Schmidt, J., Kaliske, M.: Models for numerical failure analysis of wooden structures. Eng. Struct. 31, 571–579 (2009)

    Article  Google Scholar 

  • Shao, Z.P.: Variable parameter rheological model of wood. Wood Sci. Technol. 39(1), 19–26 (2005)

    Article  Google Scholar 

  • Shao, Z.P., Wang, F.L.: Mechanical characteristics of bamboo structure and its components. In: The Fracture Mechanics of Plant Materials, pp. 125–130. Springer, Singapore (2018)

    Chapter  Google Scholar 

  • Svensson, S., Toratti, T.: Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Sci. Technol. 36, 145–156 (2002)

    Article  Google Scholar 

  • Tabarsa, T.: Compression Perpendicular-to-Grain Behaviour of Wood. Ph.D. Thesis, Forestry and Environmental Management, the University of New Brunswick, Canada (1999)

  • Tancrède, A., Gronvold, A., Arie, V.D.L., Clair, B., Montero, C.: Contribution of cellulose to the moisture-dependent elastic behaviour of wood. Compos. Sci. Technol. 138, 151–160 (2017)

    Article  Google Scholar 

  • Toratti, T., Svensson, S.: Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads. Wood Sci. Technol. 34, 317–326 (2000)

    Article  Google Scholar 

  • Vidal-Sallé, E., Chassagne, P.: Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model application to wood material. Mech. Time-Depend. Mater. 11(2), 127–142 (2007)

    Article  Google Scholar 

  • Zhang, W.F., Jiang, Z.H., Wang, G., Cheng, H.T., Zhang, D.: Radial compression mechanical properties of bamboo-culm by ring stiffness. J. Beijing For. Univ. 35(1), 119–122 (2013)

    Google Scholar 

  • Zhou, Y., Fushitani, M., Kubo, T., Ozawa, M.: Bending creep behavior of wood under cyclic moisture changes. J. Wood Sci. 45(2), 113–119 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by National Natural Science Foundation of China (No. 31570715). And we hereby express our appreciation to Dr. Fuli Wang for her help during the period of revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoping Shao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Song, G. & Shao, Z. Rheological parameters and characteristics of bamboo in compression perpendicular to grain under hot-pressing process. Mech Time-Depend Mater 25, 313–325 (2021). https://doi.org/10.1007/s11043-019-09443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-019-09443-y

Keywords

Navigation