Skip to main content
Log in

Model Compounds Study for the Mechanism of Horseradish Peroxidase-Catalyzed Lignin Modification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Horseradish peroxidase (HRP) has demonstrated high activity for the modification of lignin. In this paper, several lignin model compounds with different functional groups and linkages are selected to investigate the reactivity of HRP-catalyzed lignin modification. The phenolic groups of lignin model compounds are indispensable for the HRP-catalyzed modification process. The introduction of the sulfomethylated methyl group or methoxyl group could facilitate or inhibit the modification, respectively. The oxidative coupling activity of α-O-4 lignin model compounds is higher than that of β-O-4 compounds. Meanwhile, the free energy obtained by density functional theory (DFT) is used to verify the results of the experimental study, and the order of preference for linkages is β-5 > β-β > β-O-4 in most cases. In addition, electron cloud density and steric hindrance of lignin model compounds have crucial effects on the oxidation and modification processes. Finally, the mechanism of HRP-catalyzed lignin modification is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mottiar, Y., Vanholme, R., Boerjan, W., Ralph, J., & Mansfield, S. D. (2016). Designer lignins: Harnessing the plasticity of lignification. Current Opinion in Biotechnology, 37, 190–200.

    Article  CAS  Google Scholar 

  2. Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S. F., Beckham, G. T., & Sels, B. F. (2018). Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 47(3), 852–908.

    Article  CAS  Google Scholar 

  3. Kai, D., Tan, M. J., Chee, P. L., Chua, Y. K., Yap, Y. L., & Loh, X. J. (2016). Towards lignin-based functional materials in a sustainable world. Green Chemistry, 18, 1175–1200.

    Article  CAS  Google Scholar 

  4. Stewart, D. (2008). Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products, 27, 202–207.

    Article  CAS  Google Scholar 

  5. Jonsson, L. J., & Martin, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112.

    Article  Google Scholar 

  6. Amin, F. R., Khalid, H., Zhang, H., Rahman, S. U., Zhang, R. H., Liu, G. Q., & Chen, C. (2017). Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express, 7(1), 72. https://doi.org/10.1186/s13568-017-0375-4.

  7. Matsushita, Y. (2015). Conversion of technical lignins to functional materials with retained polymeric properties. Journal of Wood Science, 61, 230–250.

    Article  CAS  Google Scholar 

  8. Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachua, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.

    Article  CAS  Google Scholar 

  9. Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition, 55, 8164–8215.

    Article  CAS  Google Scholar 

  10. Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233–269.

    Article  CAS  Google Scholar 

  11. Buono, P., Duval, A., Verge, P., Averous, L., & Habibi, Y. (2016). New insights on the chemical modification of lignin: Acetylation versus silylation. ACS Sustainable Chemistry & Engineering, 4, 5212–5222.

    Article  CAS  Google Scholar 

  12. Wang, J. H., Feng, J. J., Jia, W. T., Chang, S., Li, S. Z., & Li, Y. X. (2015). Lignin engineering through laccase modification: A promising field for energy plant improvement. Biotechnology for Biofuels, 8, 145. https://doi.org/10.1186/s13068-015-0331-y.

  13. Gronqvist, S., Viikari, L., Niku-Paavola, M. L., Orlandi, M., Canevali, C., & Buchert, J. (2005). Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase. Applied Microbiology and Biotechnology, 67, 489–494.

    Article  CAS  Google Scholar 

  14. Arora, D. S., & Sharma, R. K. (2010). Ligninolytic fungal laccases and their biotechnological applications. Applied Biochemistry and Biotechnology, 160, 1760–1788.

    Article  CAS  Google Scholar 

  15. Zhou, H. F., Yang, D. J., Qiu, X. Q., Wu, X. L., & Li, Y. (2013). A novel and efficient polymerization of lignosulfonates by horseradish peroxidase/H2O2 incubation. Applied Microbiology and Biotechnology, 97, 10309–10320.

    Article  CAS  Google Scholar 

  16. Yang, D. J., Wu, X. L., Qiu, X. Q., Chang, Y. Q., & Lou, H. M. (2014). Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase. Bioresource Technology, 155, 418–421.

    Article  CAS  Google Scholar 

  17. Yang, D. J., Chang, Y. Q., Wu, X. L., Qiu, X. Q., & Lou, H. M. (2014). Modification of sulfomethylated alkali lignin catalyzed by horseradish peroxidase. RSC Advances, 4, 53855–53863.

    Article  CAS  Google Scholar 

  18. Zhou, H. F., Chang, Y., Wu, X. L., Yang, D. J., & Qiu, X. Q. (2015). Horseradish peroxidase modification of sulfomethylated wheat straw alkali lignin to improve its dispersion performance. ACS Sustainable Chemistry & Engineering, 3, 518–523.

    Article  CAS  Google Scholar 

  19. Ding, Z. X., Qiu, X. Q., Fang, Z. Q., & Yang, D. J. (2018). Effect of molecular weight on the reactivity and dispersibility of sulfomethylated alkali lignin modified by horseradish peroxidase. ACS Sustainable Chemistry & Engineering, 6, 14197–14202.

    Article  CAS  Google Scholar 

  20. Sangha, A. K., Davison, B. H., Standaert, R. F., Davis, M. F., Smith, J. C., & Parks, J. M. (2014). Chemical factors that control lignin polymerization. The Journal of Physical Chemistry. B, 118(1), 164–170.

    Article  CAS  Google Scholar 

  21. Custodis, V. B. F., Hemberger, P., Ma, Z. Q., & van Bokhoven, J. A. (2014). Mechanism of fast pyrolysis of lignin: Studying model compounds. The Journal of Physical Chemistry. B, 118(29), 8524–8531.

    Article  CAS  Google Scholar 

  22. Beste, A., & Buchanan, A. C. (2009). Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers. The Journal of Organic Chemistry, 74(7), 2837–2841.

    Article  CAS  Google Scholar 

  23. Russell, W. R., Burkitt, M. J., Scobbie, L., & Chesson, A. (2006). EPR investigation into the effects of substrate structure on peroxidase-catalyzed phenylpropanold oxidation. Biomacromolecules, 7(1), 268–273.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the National Key Research and Development Program of China (2018YFB1501503), National Natural Science Foundation of China (21878114, 21706079, 21690083, 21576106), Natural Science Foundation of Guangdong Province of China (2018B030311052, 2017B090903003), and State Key Laboratory of Pulp and Paper Engineering (201828).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixian Li or Xueqing Qiu.

Ethics declarations

Competing Interests

The authors declare they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Wang, Y., Huang, W. et al. Model Compounds Study for the Mechanism of Horseradish Peroxidase-Catalyzed Lignin Modification. Appl Biochem Biotechnol 191, 981–995 (2020). https://doi.org/10.1007/s12010-020-03248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03248-3

Keywords

Navigation