Skip to main content
Log in

Perspective of mixed matrix membranes for carbon capture

  • Views & Comments
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Polymeric membrane-based gas separation has found wide applications in industry, such as carbon capture, hydrogen recovery, natural gas sweetening, as well as oxygen enrichment. Commercial gas separation membranes are required to have high gas permeability and selectivity, while being cost-effective to process. Mixed matrix membranes (MMMs) have a composite structure that consists of polymers and fillers, therefore featuring the advantages of both materials. Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties, such as mechanical strength and thermal stability. This perspective describes potential use of MMMs for carbon capture applications, explores their limitations in fabrication and methods to overcome them, and addresses their performance under industry gas conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker R W. Membrane Technology and Applications. Hoboken: John Wiley & Sons Ltd., 2004, 1–14

    Google Scholar 

  2. Freeman B D, Pinnau I. Polymer Membranes for Gas and Vapor Separation. Washington, DC: American Chemical Society, 1999, 1–27

    Google Scholar 

  3. Galizia M, Chi W S, Smith Z P, Merkel T C, Baker R W, Freeman B D. 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules, 2017, 50(20): 7809–7843

    CAS  Google Scholar 

  4. Bauer N, Mouratiadou I, Luderer G, Baumstark L, Brecha R J, Edenhofer O, Kriegler E. Global fossil energy markets and climate change mitigation—an analysis with REMIND. Climatic Change, 2016, 136(1): 69–82

    Google Scholar 

  5. Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3(1): 43–81

    CAS  Google Scholar 

  6. Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400

    CAS  Google Scholar 

  7. Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185

    CAS  Google Scholar 

  8. Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 1999, 32(2): 375–380

    CAS  Google Scholar 

  9. Chung T S, Jiang L Y, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32(4): 483–507

    CAS  Google Scholar 

  10. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, Ismail A F, Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 2014, 39(5): 817–861

    CAS  Google Scholar 

  11. Dong G, Li H, Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(15): 4610–4630

    CAS  Google Scholar 

  12. Kanehashi S. Development of hybrid membranes for carbon capture. Kobunshi Ronbunshu, 2016, 73(5): 475–490

    CAS  Google Scholar 

  13. Ismail A F, Khulbe K, Matsuura T. Gas Separation Membranes. New York: Springer International Publishing, 2015, 11–35

    Google Scholar 

  14. Hilal N, Ismail A F, Matsuura T, Oatley-Radcliffe D. Membrane Characterization. Amsterdam: Elsevier, 2017, 309–336

    Google Scholar 

  15. Kanehashi S, Nagai K. Analysis of dual-mode model parameters for gas sorption in glassy polymers. Journal of Membrane Science, 2005, 253(1–2): 117–138

    CAS  Google Scholar 

  16. Kanehashi S, Chen G Q, Scholes C A, Ozcelik B, Hua C, Ciddor L, Southon P D, D’Alessandro D M, Kentish S E. Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. Journal of Membrane Science, 2015, 482: 49–55

    CAS  Google Scholar 

  17. Bruggeman D A G. Calculation of different physical Constants of heterogeneous substances. I. Dielectric Constants and conductivities of the mixed bodies of isotropic substances. Annalen der Physik, 1935, 416(7): 636–664 (in German)

    Google Scholar 

  18. Lewis T B, Nielsen L E. Dynamic mechanical properties of particulate-filled composites. Journal of Applied Polymer Science, 1970, 14(6): 1449–1471

    CAS  Google Scholar 

  19. Mahajan R, Koros W J. Mixed matrix membrane materials with glassy polymers. Part 1. Polymer Engineering and Science, 2002, 42(7): 1420–1431

    CAS  Google Scholar 

  20. Bondi A. van der Waals volume and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451

    CAS  Google Scholar 

  21. van Krevelen D W. Properties of Polymers. 4th ed. Amsterdam: Elsevier, 2009

    Google Scholar 

  22. Kanehashi S, Gu H, Shindo R, Sato S, Miyakoshi T, Nagai K. Gas permeation and separation properties of polyimide/ZSM-5 zeolite composite membranes containing liquid sulfolane. Journal of Applied Polymer Science, 2013, 128(6): 3814–3823

    CAS  Google Scholar 

  23. Shindo R, Kishida M, Sawa H, Kidesaki T, Sato S, Kanehashi S, Nagai K. Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid. Journal of Membrane Science, 2014, 454: 330–338

    CAS  Google Scholar 

  24. Xin Q, Ouyang J, Liu T, Li Z, Li Z, Liu Y, Wang S, Wu H, Jiang Z, Cao X. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks. ACS Applied Materials & Interfaces, 2015, 7(2): 1065–1077

    CAS  Google Scholar 

  25. Patel R, Park J T, Hong H P, Kim J H, Min B R. Use of block copolymer as compatibilizer in polyimide/zeolite composite membranes. Polymers for Advanced Technologies, 2011, 22(5): 768–772

    CAS  Google Scholar 

  26. Kanehashi S, Chen G Q, Danaci D, Webley P A, Kentish S E. Can the addition of carbon nanoparticles to a polyimide membrane reduce plasticization? Separation and Purification Technology, 2017, 183: 333–340

    CAS  Google Scholar 

  27. Chung T S, Chan S S, Wang R, Lu Z, He C. Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. Journal of Membrane Science, 2003, 211(1): 91–99

    CAS  Google Scholar 

  28. Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003, 211(2): 311–334

    CAS  Google Scholar 

  29. Zhang Y, Musselman I H, Ferraris J P, Balkus K J. Gas permeability properties of mixed-matrix matrimid membranes containing a carbon aerogel: A material with both micropores and mesopores. Industrial & Engineering Chemistry Research, 2008, 47(8): 2794–2802

    CAS  Google Scholar 

  30. Yong H H, Park H C, Kang Y S, Won J, Kim W N. Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. Journal of Membrane Science, 2001, 188(2): 151–163

    CAS  Google Scholar 

  31. Zornoza B, Téllez C, Coronas J. Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 2011, 368(1–2): 100–109

    CAS  Google Scholar 

  32. Khan A L, Klaysom C, Gahlaut A, Khan A U, Vankelecom I F J. Mixed matrix membranes comprising of Matrimid and −SO3H functionalized mesoporous MCM-41 for gas separation. Journal of Membrane Science, 2013, 447: 73–79

    CAS  Google Scholar 

  33. Hosseini S S, Li Y, Chung T S, Liu Y. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 2007, 302(1–2): 207–217

    CAS  Google Scholar 

  34. Moghadam F, Omidkhah M R, Vasheghani-Farahani E, Pedram M Z, Dorosti F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011, 77(1): 128–136

    CAS  Google Scholar 

  35. Song Q, Nataraj S K, Roussenova M V, Tan J C, Hughes D J, Li W, Bourgoin P, Alam M A, Cheetham A K, Al-Muhtaseb S A, Sivaniah E. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 2012, 5(8): 8359–8369

    CAS  Google Scholar 

  36. Zhang Y, Balkus K J Jr, Musselman I H, Ferraris J P. Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles. Journal of Membrane Science, 2008, 325(1): 28–39

    CAS  Google Scholar 

  37. Perez E V, Balkus K J Jr, Ferraris J P, Musselman I H. Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 2009, 328(1–2): 165–173

    CAS  Google Scholar 

  38. Zhang Y, Musselman I H, Ferraris J P, Balkus K J Jr. Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu-BPY-HFS. Journal of Membrane Science, 2008, 313(1–2): 170–181

    CAS  Google Scholar 

  39. Ordoñez M J C, Balkus K J Jr, Ferraris J P, Musselman I H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1–2): 28–37

    Google Scholar 

  40. Nagai K, Masuda T, Nakagawa T, Freeman B D, Pinnau I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Progress in Polymer Science, 2001, 26(5): 721–798

    CAS  Google Scholar 

  41. Bos A, Pünt I G M, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science, 1999, 155(1): 67–78

    CAS  Google Scholar 

  42. Donohue M D, Minhas B S, Lee S Y. Permeation behavior of carbon dioxide-methane mixtures in cellulose acetate membranes. Journal of Membrane Science, 1989, 42(3): 197–214

    CAS  Google Scholar 

  43. Ismail A F, Lorna W. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Separation and Purification Technology, 2002, 27(3): 173–194

    CAS  Google Scholar 

  44. Wessling M, Schoeman S, van der Boomgaard T, Smolders C A. Plasticization of gas separation membranes. Gas Separation & Purification, 1991, 5(4): 222–228

    CAS  Google Scholar 

  45. Duthie X, Kentish S, Pas S J, Hill A J, Powell C, Nagai K, Stevens G, Qiao G. Thermal treatment of dense polyimide membranes. Journal of Polymer Science. Part B, Polymer Physics, 2008, 46(18): 1879–1890

    CAS  Google Scholar 

  46. Duthie X J, Kentish S E, Powell C E, Qiao G G, Nagai K, Stevens G W. Plasticization suppression in grafted polyimide-epoxy network membranes. Industrial & Engineering Chemistry Research, 2007, 46(24): 8183–8192

    CAS  Google Scholar 

  47. Kanehashi S, Nakagawa T, Nagai K, Duthie X, Kentish S, Stevens G. Effects of carbon dioxide-induced plasticization on the gas transport properties of glassy polyimide membranes. Journal of Membrane Science, 2007, 298(1–2): 147–155

    CAS  Google Scholar 

  48. Kanehashi S, Onda M, Shindo R, Sato S, Kazama S, Nagai K. Synthesis, characterization, and CO2 permeation properties of acetylene-terminated polyimide membranes. Polymer Engineering and Science, 2013, 53(8): 1667–1675

    CAS  Google Scholar 

  49. Wind J D, Staudt-Bickel C, Paul D R, Koros W J. Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction. Macromolecules, 2003, 36(6): 1882–1888

    CAS  Google Scholar 

  50. Bos A, Pünt I, Strathmann H, Wessling M. Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(5): 1088–1093

    CAS  Google Scholar 

  51. Shahid S, Nijmeijer K. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe (BTC). Journal of Membrane Science, 2014, 459: 33–44

    CAS  Google Scholar 

  52. Scholes C A, Kentish S E, Stevens G W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Separation and Purification Reviews, 2009, 38(1): 1–44

    CAS  Google Scholar 

  53. Merkel T C, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010, 359(1–2): 126–139

    CAS  Google Scholar 

  54. Baker R W, Lokhandwala K. Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121

    CAS  Google Scholar 

  55. Deng L, Hägg M B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control, 2010, 4(4): 638–646

    CAS  Google Scholar 

  56. Chen G Q, Kanehashi S, Doherty C M, Hill A J, Kentish S E. Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification. Journal of Membrane Science, 2015, 487: 249–255

    CAS  Google Scholar 

  57. Kanehashi S, Konishi S, Takeo K, Owa K, Kawakita H, Sato S, Miyakoshi T, Nagai K. Effect of OH group on the water vapor sorption property of adamantane-containing polymer membranes. Journal of Membrane Science, 2013, 427: 176–185

    CAS  Google Scholar 

  58. Kanehashi S, Tomita Y, Obokata K, Kidesaki T, Sato S, Miyakoshi T, Nagai K. Effect of substituted groups on characterization and water vapor sorption property of polyhedral oligomeric silsesquioxane (POSS)-containing methacryl polymer membranes. Polymer, 2013, 54(9): 2315–2323

    CAS  Google Scholar 

  59. Azher H, Scholes C A, Stevens G W, Kentish S E. Water permeation and sorption properties of Nafion 115 at elevated temperatures. Journal of Membrane Science, 2014, 459: 104–113

    CAS  Google Scholar 

  60. Lu H T, Kanehashi S, Scholes C A, Kentish S E. The potential for use of cellulose triacetate membranes in post combustion capture. International Journal of Greenhouse Gas Control, 2016, 55: 97–104

    CAS  Google Scholar 

  61. Farla J C M, Hendriks C A, Blok K. Carbon dioxide recovery from industrial processes. Climatic Change, 1995, 29(4): 439–461

    CAS  Google Scholar 

  62. Thambimuthu K, Soltanieh M, Abandas J C. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2005

    Google Scholar 

  63. Awe O W, Zhao Y, Nzihou A, Minh D P, Lyczko N. A review of biogas utilisation, purification and upgrading technologies. Waste and Biomass Valorization, 2017, 8(2): 267–283

    CAS  Google Scholar 

  64. Kanehashi S, Chen G Q, Ciddor L, Chaffee A, Kentish S E. The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492: 471–477

    CAS  Google Scholar 

  65. Kanehashi S, Aguiar A, Lu H T, Chen G Q, Kentish S. Effects of industrial gas impurities on the performance of mixed matrix membranes. Journal of Membrane Science, 2018, 549: 686–692

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Kanehashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanehashi, S., Scholes, C.A. Perspective of mixed matrix membranes for carbon capture. Front. Chem. Sci. Eng. 14, 460–469 (2020). https://doi.org/10.1007/s11705-019-1881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1881-5

Keywords

Navigation