Skip to main content

Advertisement

Log in

Land use and land cover control on the spatial variation of dissolved organic matter across 41 lakes in Mississippi, USA

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

While dissolved organic matter (DOM) is an important indicator of water quality, land use and land cover (LULC) of watersheds define the source, quality, and quantity of DOM delivered to a waterbody. This study examined the influence of various LULC classes in the spatial distribution of DOM in 41 lakes across the state of Mississippi. To scale the influence of LULC classes on DOM distribution, we have classified 41 lakes into five clusters based on DOM compositions determined by parallel factor analysis. Four major DOM compositions including terrestrial humic-like (C1), microbial humic-like (C2), soil-derived humic-like (C3), and tryptophan-like or tyrosine like (C4) components were identified. Higher amounts of terrestrial humic-like and soil-derived humic-like DOM compositions were observed in lakes within watersheds dominated by forested, barren, wetlands, or agricultural areas with exposed unconsolidated soil. Higher amounts of microbial humic-like composition were observed in lakes surrounded by hay/pasture, rangeland, and urbanized areas. Additionally, protein-like DOM and ammonia were more enriched in larger lakes, indicating the influences of photochemical reactions. High amounts of forested areas and higher concentrations of terrestrial humic-like DOM composition were identified in all lakes suggesting forested areas in the watershed as the principal source of DOM in Mississippi lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker, A. & R. G. M. Spencer, 2004. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Science of the Total Environment 333: 217–232.

    CAS  PubMed  Google Scholar 

  • Bouwman, L., K. K. Goldewijk, A. H. W. B. Klaas, W. Van Der Hoek, D. P. Van Vuuren, J. Willems, M. C. Rufino & E. Stehfest, 2011. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences 110: 20882–20887.

    Google Scholar 

  • Brooks, P. D., D. M. Mcknight & K. E. Bencala, 1999. The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments m−2 in the circumneutral basin and 17. 8 g C m−2 in the catchment by pyrite relationship betw. Water Resources Research 35: 1895–1902.

    CAS  Google Scholar 

  • Brookshire, E. N. J., H. M. Valett, S. A. Thomas & J. R. Webster, 2005. Coupled cycling of dissolved organic nitrogen and carbon in a forest stream. Ecology 86: 2487–2496.

    Google Scholar 

  • Cai, W.-J., X. Hu, W.-J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W.-C. Chou, W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai & G.-C. Gong, 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4: 766–770.

    CAS  Google Scholar 

  • Cleveland, C. C., J. C. Neff, A. R. Townsend & E. Hood, 2004. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7: 275–285.

    CAS  Google Scholar 

  • Coble, P. G., C. E. Del Castillo & B. Avril, 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Research Part II: topical Studies in Oceanography 45: 2195–2223.

    CAS  Google Scholar 

  • Curtis, P. J., 1998. Climatic and hydrologic control of DOM concentration and quality in lakes. In Hessen, D. O. & L. J. Tranvik (eds), Aquatic Humic Substances. Ecological Studies (Analysis and Synthesis), Vol. 133. Springer, Berlin.

    Google Scholar 

  • Dash, P., S. Silwal, J. O. Ikenga, J. L. Pinckney, Z. Arslan & R. E. Lizotte, 2015. Water quality of four major lakes in Mississippi, USA: impacts on human and aquatic ecosystem health. Water (Switzerland) 7: 4999–5030.

    CAS  Google Scholar 

  • Duan, S. & B. S. Thomas, 2006. Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the lower Mississippi and Pearl Rivers. Estuaries and Coasts 29: 427–442.

    CAS  Google Scholar 

  • Graeber, D., I. G. Boëchat, F. Encina-Montoya, C. Esse, J. Gelbrecht, G. Goyenola, B. Gücker, M. Heinz, B. Kronvang, M. Meerhoff, J. Nimptsch, M. T. Pusch, R. C. S. Silva, D. Von Schiller & E. Zwirnmann, 2015. Global effects of agriculture on fluvial dissolved organic matter. Scientific Reports Nature Publishing Group 5: 16328.

    CAS  Google Scholar 

  • Hansen, A. M., T. E. C. Kraus, B. A. Pellerin, J. A. Fleck, B. D. Downing & B. A. Bergamaschi, 2016. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnology and Oceanography 61: 1015–1032.

    CAS  Google Scholar 

  • Hosen, J. D., A. W. Armstrong & M. A. Palmer, 2018. Dissolved organic matter variations in coastal plain wetland watersheds: the integrated role of hydrological connectivity, land use, and seasonality. Hydrological Processes 32: 1664–1681.

    CAS  Google Scholar 

  • Hu, Y., Y. Lu, J. W. Edmonds, C. Liu, S. Wang, O. Das, J. Liu & C. Zheng, 2016. Hydrological and land use control of watershed exports of DOM in a large arid river basin in Northwestern China. Journal of Geophysical Research: Biogeosciences 121: 466–478.

    Google Scholar 

  • Hu, Y., Y. Lu, C. Liu, P. Shang, J. Liu & C. Zheng, 2017. Sources and dynamics of dissolved inorganic carbon, nitrogen, and phosphorus in a large agricultural River Basin in arid Northwestern China. Water (Switzerland) 9: 415.

    Google Scholar 

  • Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J. M. Froidefond & E. Parlanti, 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry Elsevier Ltd. 40: 706–719.

    CAS  Google Scholar 

  • Jaffé, R., Y. Yamashita, N. Maie, W. T. Cooper, T. Dittmar, W. K. Dodds, J. B. Jones, T. Myoshi, J. R. Ortiz-Zayas, D. C. Podgorski & A. Watanabe, 2012. Dissolved organic matter in headwater streams: compositional variability across climatic regions of North America. Geochimica et Cosmochimica Acta 94: 95–108.

    Google Scholar 

  • Johnes, P. J., 1996. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. Journal of Hydrology 183: 323–349.

    CAS  Google Scholar 

  • Kalbitz, K., J. Schmerwitz, D. Schwesig & E. Matzner, 2003. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113: 273–291.

    CAS  Google Scholar 

  • Keul, N., J. W. Morse, R. Wanninkhof, D. K. Gledhill & T. S. Bianchi, 2010. Carbonate chemistry dynamics of surface waters in the Northern Gulf of Mexico. Aquatic Geochemistry 16: 337–351.

    CAS  Google Scholar 

  • Khamis, K., C. Bradley & D. M. Hannah, 2017. Understanding dissolved organic matter dynamics in urban catchments: insights from in situ fluorescence sensor technology. Wiley Interdisciplinary Reviews: Water e1259: 1–14.

    Google Scholar 

  • Kim, R. H., J. Lee & H. W. Chang, 2003. Characteristics of organic matter as indicators of pollution from small-scale livestock and nitrate contamination of shallow groundwater in an agricultural area. Hydrological Processes 17: 2485–2496.

    Google Scholar 

  • Kothawala, D. N., X. Ji, H. Laudon, A. M. Ågren, M. N. Futter, S. J. Köhler & L. J. Tranvik, 2015. The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams. Journal of Geophysical Research G: Biogeosciences 120: 1491–1505.

    CAS  Google Scholar 

  • Lewis, D. J., M. J. Singer, R. A. Dahlgren & K. W. Tate, 2006. Nitrate and sediment fluxes from a California Rangeland Watershed. Journal of Environment Quality 35: 2202.

    CAS  Google Scholar 

  • Lottig, N. R., E. H. Stanley & J. T. Maxted, 2012. Assessing the influence of upstream drainage lakes on fluvial organic carbon in a wetland-rich region. Journal of Geophysical Research: Biogeosciences 117: 1–10.

    Google Scholar 

  • Lu, Y., J. E. Bauer, E. A. Canuel, Y. Yamashita, R. M. Chambers & R. Jaffé, 2013. Photochemical and microbial alteration of dissolved organic matter in temperate headwater streams associated with different land use. Journal of Geophysical Research: Biogeosciences 118: 566–580.

    CAS  Google Scholar 

  • Lu, Y. H., J. E. Bauer, E. A. Canuel, R. M. Chambers, Y. Yamashita, R. Jaffé & A. Barrett, 2014a. Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry 119: 275–292.

    CAS  Google Scholar 

  • Lu, Y. H., E. A. Canuel, J. E. Bauer & R. M. Chambers, 2014b. Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. Aquatic Sciences 76: 419–436.

    CAS  Google Scholar 

  • Lu, Y. H., J. W. Edmonds, Y. Yamashita, B. Zhou, A. Jaegge & M. Baxley, 2015. Spatial variation in the origin and reactivity of dissolved organic matter in Oregon-Washington coastal waters. Ocean Dynamics 65: 17–32.

    Google Scholar 

  • McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe & D. T. Andersen, 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.

    CAS  Google Scholar 

  • Mekonnen, M. M. & A. Y. Hoekstra, 2017. Global anthropogenic phosphorus loads to fresh water and associated grey water footprints and water pollution levels: a high-resolution global study. Water Resources Research. https://doi.org/10.1002/2017WR020448.

    Article  Google Scholar 

  • Molinero, J. & R. A. Burke, 2009. Effects of land use on dissolved organic matter biogeochemistry in Piedmont headwater streams of the southeastern united states. Hydrobiologia 635: 289–308.

    CAS  Google Scholar 

  • Mostofa, K. M. G., C. Liu, M. A. Mottaleb, G. Wan, H. Ogawa, D. Vione, T. Yoshioka & F. Wu, 2013. Photobiogeochemistry of organic matter. In Mostofa, K. M. G., T. Yoshioka, A. Mottaleb & D. Vione (eds), Photobiogeochemistry of Organic Matter, Environmental Science and Engineering. Springer, Berlin: 1–135.

    Google Scholar 

  • Nelson, N. B. & D. A. Siegel, 2013. The global distribution and dynamics of chromophoric dissolved organic matter. Annual Review of Marine Science 5: 447–476.

    PubMed  Google Scholar 

  • Nielsen, A., D. Trolle, M. Søndergaard, T. L. Lauridsen, J. E. Olesen, E. Jeppesen, A. Nielsen, D. Trolle, M. Sndergaard, T. L. Lauridsen, R. Bjerring, E. Olesen & E. Jeppesen, 2012. Watershed land use effects on lake water quality in Denmark. Ecological Applications 22: 1187–1200.

    PubMed  Google Scholar 

  • Ohno, T., 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology 36: 742–746.

    CAS  Google Scholar 

  • Osburn, C. L., J. N. Atar, J. N. Boyd & M. T. Montgomery, 2018. Antecedent precipitation enables increases in bacterial processing of terrestrial dissolved organic matter in a North Carolina estuary. Estaurine Coastal and Shelf Science in review Elsevier 221: 119–131.

    Google Scholar 

  • Parlanti, E., K. Wo, L. Geo & M. Lamotte, 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry 31: 1765–1781.

    CAS  Google Scholar 

  • Parr, T. B., C. S. Cronan, T. Ohno, S. E. G. Findlay, S. M. C. Smith & K. S. Simon, 2015. Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnology and Oceanography 60: 885–900.

    CAS  Google Scholar 

  • Peterson, J. A., W. H. McDowell & J. C. Neff, 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In Findlay, S. E. G. & R. L. Sinsabaugh (eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, Amsterdam: 25–70.

    Google Scholar 

  • Petrone, K. C., J. B. Fellman, E. Hood, M. J. Donn & P. F. Grierson, 2011. The origin and function of dissolved organic matter in agro-urban coastal streams. Journal of Geophysical Research: Biogeosciences 116: G01028.

    Google Scholar 

  • Pullanikkatil, D., L. G. Palamuleni & T. M. Ruhiiga, 2015. Impact of land use on water quality in the Likangala catchment, southern Malawi. African Journal of Aquatic Science 40: 277–286.

    Google Scholar 

  • Quirós, R., 2003. The relationship between nitrate and ammonia concentrations in the pelagic zone of lakes. Limnetica 22: 37–50.

    Google Scholar 

  • R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Rousseeuw, P. J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20: 53–65.

    Google Scholar 

  • Sankar, M. S., P. Dash, Y. H. Lu, V. Paul, A. E. Mercer, Z. Arslan, J. J. Varco & J. C. Rodgers, 2019a. Dissolved organic matter and trace element variability in a blackwater-fed bay following precipitation. Estuarine, Coastal and Shelf Science 231: 106452.

    CAS  Google Scholar 

  • Sankar, M. S., P. Dash, S. Singh, Y. Lu, A. E. Mercer & S. Chen, 2019b. Effect of photo-biodegradation and biodegradation on the biogeochemical cycling of dissolved organic matter across diverse surface water bodies. Journal of Environmental Sciences Elsevier 77: 130–147.

    CAS  Google Scholar 

  • Shang, P., Y. H. Lu, Y. X. Du, R. Jaffé, R. H. Findlay & A. Wynn, 2018. Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Science of the Total Environment Elsevier 612: 1442–1453.

    CAS  Google Scholar 

  • Singh, S., S. Inamdar & M. Mitchell, 2015. Changes in dissolved organic matter (DOM) amount and composition along nested headwater stream locations during baseflow and stormflow. Hydrological Processes 29: 1505–1520.

    CAS  Google Scholar 

  • Singh, S., P. Dash, S. Silwal, G. Feng, A. Adeli & R. J. Moorhead, 2017. Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments. Environmental Science and Pollution Research Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-8917-5.

    Article  PubMed  Google Scholar 

  • Singh, S., P. Dash, M. S. Sankar, S. Silwal, Y. H. Lu, P. Shang & R. J. Moorhead, 2018. Hydrological and biogeochemical controls of seasonality in dissolved organic matter delivery to a blackwater estuary. Estuaries and Coasts 42: 439–454.

    Google Scholar 

  • Spencer, R. G. M., G. R. Aiken, M. M. Dornblaser, K. D. Butler, R. M. Holmes, G. Fiske, P. J. Mann & A. Stubbins, 2013. Chromophoric dissolved organic matter export from U.S. rivers. Geophysical Research Letters 40: 1575–1579.

    CAS  Google Scholar 

  • Stedmon, C. A. & R. Bro, 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology & Oceanography: Methods 6: 572–579.

    CAS  Google Scholar 

  • Stedmon, C. A., S. Markager, L. Tranvik, L. Kronberg, T. Slätis & W. Martinsen, 2007. Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Marine Chemistry 104: 227–240.

    CAS  Google Scholar 

  • Toming, K., L. Tuvikene, S. Vilbaste, H. Agasild, M. Viik, A. Kisand, T. Feldmann, T. Martma, R. I. Jones & T. Nõges, 2013. Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment. Limnology and Oceanography 58: 1259–1270.

    CAS  Google Scholar 

  • Van Stan, J. T., S. Wagner, F. Guillemette, A. Whitetree, J. Lewis, L. Silva & A. Stubbins, 2017. Temporal dynamics in the concentration, flux, and optical properties of tree-derived dissolved organic matter in an epiphyte-laden oak-cedar forest. Journal of Geophysical Research: Biogeosciences 122: 2982–2997.

    Google Scholar 

  • Wang, Y., Y. Xu, R. G. M. Spencer, P. Zito, A. Kellerman, D. Podgorski, W. Xiao, D. Wei, H. Rashid & Y. Yang, 2018. Selective leaching of dissolved organic matter from alpine permafrost soils on the Qinghai-Tibetan Plateau. Journal of Geophysical Research: Biogeosciences 123: 1–12.

    CAS  Google Scholar 

  • Welti, N., M. Striebel, A. J. Ulseth, W. F. Cross, S. DeVilbiss, P. M. Glibert, L. Guo, A. G. Hirst, J. Hood, J. S. Kominoski, K. L. MacNeill, A. S. Mehring, J. R. Welter & H. Hillebrand, 2017. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Frontiers in Microbiology 8: 1298.

    PubMed  PubMed Central  Google Scholar 

  • Wen, Z., K. Song, Y. Shang, Y. Zhao, C. Fang & L. Lyu, 2018. Differences in the distribution and optical properties of DOM between fresh and saline lakes in a semi-arid area of Northern China. Aquatic Sciences Springer International Publishing 80: 2–12.

    Google Scholar 

  • Wilson, H. F. & M. A. Xenopoulos, 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience Nature Publishing Group 2: 37–41.

    CAS  Google Scholar 

  • Yamashita, Y. & R. Jaffé, 2008. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environmental Science & Technology 42: 7374–7379.

    CAS  Google Scholar 

  • Yamashita, Y., L. J. Scinto, N. Maie, & R. Jaffe, 2010. Dissolved organic matter characteristics across a subtropical wetland’s landscape: Application of optical properties in the assessment of environmental dynamics. Ecosystems 13: 1006–1019.

    CAS  Google Scholar 

  • Yamashita, Y., B. D. Kloeppel, J. Knoepp, G. L. Zausen & R. Jaffé, 2011. Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems 14: 1110–1122.

    CAS  Google Scholar 

  • Yu, H., H. Liang, F. Qu, Z. Han, S. Shao, H. Chang, & G. Li, 2015. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix. Scientific Reports Nature Publishing Group 5: 10207.

    CAS  Google Scholar 

  • Zhang, Y., X. Gao, W. Guo, J. Zhao & Y. Li, 2018. Origin and dynamics of dissolved organic matter in a mariculture area suffering from summertime hypoxia and acidification. Frontiers in Marine Science 5: 325.

    Google Scholar 

Download references

Acknowledgements

The research was supported by the faculty start-up grant to Dr. Padmanava Dash and funding to Mr. Gray Turnage from the U.S. Fish and Wildlife Service through the Mississippi Department of Environmental Quality. The authors are thankful to Scott Landon Sanders of the Department of Geosciences, Mississippi State University for his help during watershed delineation and to Sathish Samiappan, David Young, Nick Bailey, Sean Meachum, Ashley Kosturock, Louis Wasson, Sam Hansen, and Mary Nunenmacher for their assistance with sample collection from field sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanava Dash.

Additional information

Handling editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, M.S., Dash, P., Lu, Y. et al. Land use and land cover control on the spatial variation of dissolved organic matter across 41 lakes in Mississippi, USA. Hydrobiologia 847, 1159–1176 (2020). https://doi.org/10.1007/s10750-019-04174-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04174-0

Keywords

Navigation