Skip to main content
Log in

Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, various particulate materials have played important roles in medical applications. However, nano- and micron-sized particles of the same material could exhibit distinct properties due to different particle sizes. This finding provided a simple and effective way to improve the biological applications of particulate materials. Therefore, as a highly promising member, the effect of the particle size change of the magnesium metal organic framework-74 (Mg-MOF74) was well worth evaluating. Here we firstly assessed the in vitro and in vivo toxicity of micron/nanoscale Mg-MOF74 (m-Mg-MOF74/n-Mg-MOF74) in detail. Our in vitro study revealed that compared to micron-sized subjects, n-Mg-MOF74 provided a wider range of safe concentrations. Furthermore, both micron/nanoscale Mg-MOF74 showed good biocompatibility and allowed all the rats under the treatment to survive through the expected experimental periods, with n-Mg-MOF74 still showing lower cardiotoxicity. These advantages of nanoscale Mg-MOF74 might benefit from its sustainable and balanced release of Mg2+ both inside and outside the cells. Based on the biosafety evaluation, advanced bio-functional assessments of m/n-Mg-MOF74 including early osteogenesis and angiogenesis were also performed. Similarly, the suitable dose groups of n-Mg-MOF74 achieved optimal early osteogenic promotion and angiogenic stimulation effects. Overall, our combined data delineated the toxicity and biological behaviors of Mg-MOF74 of different scales, and suggested nanoscale Mg-MOF74 as a better choice for future applications. This result revealed that particle size reduction might be a viable strategy to improve and expand medical applications of MOFs or other particulate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Karimi, M.; Ghasemi, A.; Zangabad, P. S.; Rahighi, R.; Basri, S. M. M.; Mirshekari, H.; Amiri, M.; Pishabad, Z. S.; Aslani, A.; Bozorgomid, M. et al. Smart micro/nanoparticles in stimulusresponsive drug/gene delivery systems. Chem. Soc. Rev.2016, 45, 1457–1501.

    CAS  Google Scholar 

  2. Ramade, J.; Troc, N.; Boisron, O.; Pellarin, M.; Lebault, M. A.; Cottancin, E.; Oiko, V. T. A.; Gomes, R. C.; Rodrigues, V.; Hillenkamp, M. Nano-fried-eggs: Structural, optical, and magnetic characterization of physically prepared iron-silver nanoparticles. Nano Res.2018, 11, 6074–6085.

    CAS  Google Scholar 

  3. Zhu, X. J.; Li, J. F.; Peng, P.; Hosseini Nassab, N.; Smith, B. R. Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite. Nano Lett.2019, 19, 6725–6733.

    CAS  Google Scholar 

  4. Tang, Y. D.; Zhou, Y.; Lan, X. Z.; Huang, D. C.; Luo, T. T.; Ji, J. J.; Mafang, Z. H.; Miao, X. M.; Wang, H.; Wang, W. L. Electrospun gelatin nanofibers encapsulated with peppermint and chamomile essential oils as potential edible packaging. J. Agric. Food Chem.2019, 67, 2227–2234.

    CAS  Google Scholar 

  5. Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol.2018, 9, 1050–1074.

    CAS  Google Scholar 

  6. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science2013, 341, 1230444.

    Google Scholar 

  7. Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal -organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev.2017, 46, 3242–3285.

    CAS  Google Scholar 

  8. Li, Y. L.; Yu, C.; Yang, B.; Liu, Z. R.; Xia, P. Y.; Wang, Q. Targetcatalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens. Bioelectron.2018, 102, 307–315.

    CAS  Google Scholar 

  9. Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr -based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev.2016, 45, 2327–2367.

    CAS  Google Scholar 

  10. Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Sizecontrolled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc.2016, 138, 3518–3525.

    CAS  Google Scholar 

  11. Chen, X. J.; Zhang, M. J.; Li, S. N.; Li, L.; Zhang, L. Y.; Wang, T. T.; Yu, M.; Mou, Z. C.; Wang, C. G. Facile synthesis of polypyrrole@metal-organic framework core-shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. J. Mater. Chem. B2017, 5, 1772–1778.

    CAS  Google Scholar 

  12. Gao, X. C.; Zhai, M. J.; Guan, W. H.; Liu, J. J.; Liu, Z. L.; Damirin, A. Controllable synthesis of a smart multifunctional nanoscale metal-organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl. Mater. Inter.2017, 9, 3455–3462.

    CAS  Google Scholar 

  13. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater.2010, 9, 172–178.

    CAS  Google Scholar 

  14. Wang, Z. F.; Tang, X. J.; Wang, X. X.; Yang, D. D.; Yang, C.; Lou, Y. B.; Chen, J. X.; He, N. Y. Near -infrared light-induced dissociation of zeolitic imidazole framework-8 (ZIF-8) with encapsulated CuS nanoparticles and their application as a therapeutic nanoplatform. Chem. Commun.2016, 52, 12210–12213.

    CAS  Google Scholar 

  15. Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nystrom, A. M.; Zou, X. D. One -pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc.2016, 138, 962–968.

    CAS  Google Scholar 

  16. Zhang, X.; Chen, J. Y.; Pei, X.; Wang, J.; Wan, Q. B.; Jiang, S. K.; Huang, C.; Pei, X. B. Enhanced osseointegration of porous titanium modified with zeolitic imidazolate framework-8. ACS Appl. Mater. Inter.2017, 9, 25171–25183.

    CAS  Google Scholar 

  17. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev.2012, 112, 1232–1268.

    CAS  Google Scholar 

  18. Cai, H.; Huang, Y. L.; Li, D. Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coordin. Chem. Rev.2019, 378, 207–221.

    CAS  Google Scholar 

  19. Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater.2018, 30, 1707365.

    Google Scholar 

  20. Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials2005, 26, 3995–4021.

    CAS  Google Scholar 

  21. Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res.2018, 11, 6360–6374.

    CAS  Google Scholar 

  22. Ríos, F.; Fernández-Arteaga, A.; Fernández-Serrano, M.; Jurado, E.; Lechuga, M. Silica micro- and nanoparticles reduce the toxicity of surfactant solutions. J. Hazard. Mater.2018, 353, 436–443.

    Google Scholar 

  23. Soenen, S. J.; Parak, W. J.; Rejman, J.; Manshian, B. (Intra)cellular stability of inorganic nanoparticles: Effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev.2015, 115, 2109–2135.

    CAS  Google Scholar 

  24. Wu, B.; Chen, L.; Wu, X. M.; Hou, H.; Wang, Z. Z.; Liu, S. Differential influence of molybdenum disulfide at the nanometer and micron scales in the intestinal metabolome and microbiome of mice. Environ. Sci-Nano.2019, 6, 1594–1606.

    CAS  Google Scholar 

  25. Croissant, J. G.; Fatieiev, Y.; Khashab, N. M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater.2017, 29, 1604634.

    Google Scholar 

  26. Wen, J.; Yang, K.; Liu, F. Y.; Li, H. J.; Xu, Y. Q.; Sun, S. G. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev.2017, 46, 6024–6045.

    CAS  Google Scholar 

  27. Kiew, S. F.; Kiew, L. V.; Lee, H. B.; Imae, T.; Chung, L. Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control Release2016, 226, 217–228.

    CAS  Google Scholar 

  28. Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P. Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B2014, 2, 262–271.

    CAS  Google Scholar 

  29. Dietzel, P. D. C.; Blom, R.; Fjellvåg, H. Base-induced formation of two magnesium metal-organic framework compounds with a bifunctional tetratopic ligand. Eur. J. Inorg. Chem.2008, 2008, 3624–3632.

    Google Scholar 

  30. De Baaij, J. H. F.; Hoenderop, J. G. J.; Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev.2015, 95, 1–46.

    Google Scholar 

  31. Lih, E.; Kum, C. H.; Park, W.; Chun, S. Y.; Cho, Y.; Joung, Y. K.; Park, K. S.; Hong, Y. J.; Ahn, D. J.; Kim, B. S. et al. Modified magnesium hydroxide nanoparticles inhibit the inflammatory response to biodegradable poly(lactide-co-glycolide) implants. ACS Nano2018, 12, 6917–6925.

    CAS  Google Scholar 

  32. Lin, S. H.; Yang, G. Z.; Jiang, F.; Zhou, M. L.; Yin, S.; Tang, Y. M.; Tang, T. T.; Zhang, Z. Y.; Zhang, W. J.; Jiang, X. Q. A magnesiumenriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv. Sci.2019, 6, 1900209.

    Google Scholar 

  33. Bose, S.; Fielding, G.; Tarafder, S.; Bandyopadhyay, A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol2013, 31, 594–605.

    CAS  Google Scholar 

  34. Shen, X. K.; Zhang, Y. Y.; Ma, P. P.; Sutrisno, L.; Luo, Z.; Hu, Y.; Yu, Y. L.; Tao, B. L.; Li, C. Q.; Cai, K. Y. Fabrication of magnesium/ zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration. Biomaterials2019, 212, 1–16.

    CAS  Google Scholar 

  35. Liu, W.; Yan, Z. J.; Ma, X. L.; Geng, T.; Wu, H. H.; Li, Z. Y. Mg -MOF-74/MgF2 composite coating for improving the properties of magnesium alloy implants: Hydrophilicity and corrosion resistance. Materials2018, 11, E396.

    Google Scholar 

  36. Yao, Z. Y.; Guo, J. H.; Wang, P.; Liu, Y.; Guo, F.; Sun, W. Y. Controlled synthesis of micro/nanoscale Mg-MOF-74 materials and their adsorption property. Mater. Lett.2018, 223, 174–177.

    CAS  Google Scholar 

  37. Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q. Screening of bio-compatible metal–organic frameworks as potential drug carriers using Monte Carlo simulations. J. Mater. Chem. B2014, 2, 766–774.

    CAS  Google Scholar 

  38. Zhu, Z.; Liu, Y. H.; Xue, Y. Y.; Cheng, X. T.; Zhao, W. F.; Wang, J.; He, R.; Wan, Q. B.; Pei, X. B. Tazarotene released from aligned electrospun membrane facilitates cutaneous wound healing by promoting angiogenesis. ACS Appl. Mater. Inter.2019, 11, 36141–36153.

    CAS  Google Scholar 

  39. Qu, J.; Zhao, X.; Liang, Y. P.; Zhang, T. L.; Ma, P. X.; Guo, B. L. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials2018, 183, 185–199.

    CAS  Google Scholar 

  40. Ma, P. A.; Xiao, H. H.; Yu, C.; Liu, J. H.; Cheng, Z. Y.; Song, H. Q.; Zhang, X. Y.; Li, C. X.; Wang, J. Q.; Gu, Z. et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett.2017, 17, 928–937.

    CAS  Google Scholar 

  41. Wang, D. L.; Lin, Z. F.; Wang, T.; Yao, Z. F.; Qin, M. N.; Zheng, S. R.; Lu, W. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? J. Hazard. Mater.2016, 308, 328–334.

    CAS  Google Scholar 

  42. Goudouri, O. M.; Kontonasaki, E.; Lohbauer, U.; Boccaccini, A. R. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater.2014, 10, 3795–3810.

    CAS  Google Scholar 

  43. Aruoja, V.; Pokhrel, S.; Sihtmäe, M.; Mortimer, M.; Mäedler, L.; Kahru, A. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ. Sci-Nano.2015, 2, 630–644.

    CAS  Google Scholar 

  44. Lai, D.; Ding, J.; Smith, G. W.; Smith, G. D.; Takayama, S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum. Reprod2015, 30, 37–45.

    CAS  Google Scholar 

  45. Kudla, J.; Becker, D.; Grill, E.; Hedrich, R.; Hippler, M.; Kummer, U.; Parniske, M.; Romeis, T.; Schumacher, K. Advances and current challenges in calcium signaling. New Phytol.2018, 218, 414–431.

    Google Scholar 

  46. Kim, K.; Hung, R. J.; Perrimon, N. miR-263a regulates ENaC to maintain osmotic and intestinal stem cell homeostasis in Drosophila. Dev. Cell2017, 40, 23–36.

    CAS  Google Scholar 

  47. Zhang, Y. H.; Rhee, K. Y.; Hui, D.; Park, S. J. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos. Part B-Eng.2018, 143, 19–27.

    CAS  Google Scholar 

  48. Yu, C.; Li, L. F.; Xie, F.; Guo, S. C.; Liu, F. Y.; Dong, N. G.; Wang, Y. J. LncRNA TUG1 sponges miR-204–5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc. Res.2018, 114, 168–179.

    CAS  Google Scholar 

  49. Zhang, Y. Z.; Liu, X. M.; Li, Z. Y.; Zhu, S. L.; Yuan, X. B.; Cui, Z. D.; Yang, X. J.; Chu, P. K.; Wu, S. L. Nano Ag/ZnO-incorporated hydroxyapatite composite coatings: Highly effective infection prevention and excellent osteointegration. ACS Appl. Mater. Inter.2018, 10, 1266–1277.

    CAS  Google Scholar 

  50. Kihara, T.; Hirose, M.; Oshima, A.; Ohgushi, H. Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochem. Biophys. Res. Commun.2006, 341, 1029–1035.

    CAS  Google Scholar 

  51. Su, C. H.; Li, W. P.; Tsao, L. C.; Wang, L. C.; Hsu, Y. P.; Wang, W. J.; Liao, M. C.; Lee, C. L.; Yeh, C. S. Enhancing microcirculation on multitriggering manner facilitates angiogenesis and collagen deposition on wound healing by photoreleased no from heminderivatized colloids. ACS Nano2019, 13, 4290–4301.

    CAS  Google Scholar 

  52. Yu, Y. Q.; Jin, G. D.; Xue, Y.; Wang, D. H.; Liu, X. Y.; Sun, J. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater.2017, 49, 590–603.

    CAS  Google Scholar 

  53. Sun, T. W.; Yu, W. L.; Zhu, Y. J.; Yang, R. L.; Shen, Y. Q.; Chen, D. Y.; He, Y. H.; Chen, F. Hydroxyapatite Nanowire@magnesium silicate core-shell hierarchical nanocomposite: Synthesis and application in bone regeneration. ACS Appl. Mater. Interfaces2017, 9, 16435–16447.

    CAS  Google Scholar 

  54. Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB Journal2008, 22, 659–661.

    CAS  Google Scholar 

  55. Rosanoff, A.; Dai, Q.; Shapses, S. A. Essential nutrient interactions: Does low or suboptimal magnesium status interact with vitamin d and/or calcium status? Adv. Nutr.2016, 7, 25–43.

    CAS  Google Scholar 

  56. Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephro.2015, 10, 1257–1272.

    CAS  Google Scholar 

  57. Gao, C. Y.; Jin, Y.; Jia, G.; Suo, X. M.; Liu, H. F.; Liu, D. D.; Yang, X. J.; Ge, K.; Liang, X. J.; Wang, S. X. et al. Y2O3 nanoparticles caused bone tissue damage by breaking the intracellular phosphate balance in bone marrow stromal cells. ACS Nano2019, 13, 313–323.

    CAS  Google Scholar 

  58. Govan, J. R.; Porter, C. A.; Cook, J. G. H.; Dixon, B.; Trafford, J. A. Acute magnesium poisoning as a complication of chronic intermittent haemodialysis. Br. Med. J.1968, 2, 278.

    CAS  Google Scholar 

  59. Beller, G. A.; Hood, W. B. Jr.; Smith, T. W.; Abelmann, W. H.; Wacker, W. E. C. Correlation of serum magnesium levels and cardiac digitalis intoxication. Am. J. Cardiol1974, 33, 225–230.

    CAS  Google Scholar 

  60. Lai, Y. X.; Cao, H. J.; Wang, X. L.; Chen, S. K.; Zhang, M.; Wang, N.; Yao, Z. H.; Dai, Y.; Xie, X. H.; Zhang, P. et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials2018, 153, 1–13.

    CAS  Google Scholar 

  61. Goradel, N. H.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell Physiol.2018, 233, 2902–2910.

    Google Scholar 

  62. Almubarak, S.; Nethercott, H.; Freeberg, M.; Beaudon, C.; Jha, A.; Jackson, W.; Marcucio, R.; Miclau, T.; Healy, K.; Bahney, C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone2016, 83, 197–209.

    CAS  Google Scholar 

  63. Yan, Y. F.; Chen, H.; Zhang, H. B.; Guo, C. J.; Yang, K.; Chen, K. Z.; Cheng, R. Y.; Qian, N. D.; Sandler, N.; Zhang, Y. S. et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials2019, 190, 97–110.

    Google Scholar 

  64. Lai, Y. X.; Li, Y.; Cao, H. J.; Long, J.; Wang, X. L.; Li, L.; Li, C. R.; Jia, Q. Y.; Teng, B.; Tang, T. T. et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials2019, 197, 207–219.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 8160161 381771122 81970985, and 81970984), Key research program of Sichuan Science and technology Department (No. 2018SZ0037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Xibo Pei.

Electronic supplementary material

12274_2020_2642_MOESM1_ESM.pdf

Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Jiang, S., Liu, Y. et al. Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Res. 13, 511–526 (2020). https://doi.org/10.1007/s12274-020-2642-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2642-y

Keywords

Navigation