Skip to main content

Advertisement

Log in

TiO2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Widespread application of titanium dioxide nanoparticles (nTiO2) and ubiquitous cadmium (Cd) pollution may increase their chance of co-existence in the natural environment. Toxicological information on co-exposure of nTiO2 and Cd in mammalian models is largely lacking. Hence, we studied the combined effects of nTiO2 and Cd in human liver (HepG2) and breast cancer (MCF-7) cells. We observed that nTiO2 did not produce toxicity to HepG2 and MCF-7 cells. However, moderate concentration of Cd exposure caused cytotoxicity to both cells. Interestingly, non-cytotoxic concentration of nTiO2 effectively enhanced the oxidative stress response of Cd indicated by pro-oxidants generation (reactive oxygen species, hydrogen peroxide, and lipid peroxidation) and antioxidants depletion (glutathione level and glutathione reductase, superoxide dismutase, and catalase enzymes). Moreover, nTiO2 potentiated the Cd-induced apoptosis in both cells suggested by altered expression of p53, bax, and bcl-2 genes along with low mitochondrial membrane potential. Cellular uptake results demonstrated that nTiO2 facilitates the internalization of Cd into the cells. Overall, this study demonstrated that non-cytotoxic concentration of nTiO2 enhanced the toxicological potential of Cd in human cells. Therefore, more attention should be paid on the combine effects of nTiO2 and Cd on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahamed M, Akhtar MJ, Alhadlaq HA (2019) Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicol in Vitro 57:18–27

    CAS  Google Scholar 

  • Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA (2015) Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine (London) 10:2365–2377

    Article  CAS  Google Scholar 

  • Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108

    CAS  Google Scholar 

  • Ahamed M, Khan MAM, Akhtar MJ, Alhadlaq HA, Alshamsan A (2016) Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells. Sci Rep 6:30196

    CAS  Google Scholar 

  • Ahamed M, Khan MAM, Akhtar MJ, Alhadlaq HA, Alshamsan A (2017) Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Sci Rep 7:17662

    Google Scholar 

  • Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A (2017) Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj 1861:802–813

    CAS  Google Scholar 

  • Alhadlaq HA, Akhtar MJ, Ahamed M (2019) Different cytotoxic and apoptotic responses of MCF-7 and HT1080 cells to MnO2 nanoparticles are based on similar mode of action. Toxicology 411:71–80

    CAS  Google Scholar 

  • Alqudami A, Alhemiary NA, Munassar S (2012) Removal of Pb(II) and Cd(II) ions from water by Fe and Ag nanoparticles prepared using electro-exploding wire technique. Environ Sci Pollut Res 19:2832–2841

    CAS  Google Scholar 

  • An X, Liu H, Qu J, Moniz SJA, Tang J (2015) Photocatalytic mineralisation of herbicide 2,4,5-trichlorophenoxyacetic acid: enhanced performance by triple junction Cu–TiO2–Cu2O and the underlying reaction mechanism. New J Chem 39:314–320

    CAS  Google Scholar 

  • Arbuckle TE, Liang CL, Morisset AS, Fisher M, Weiler H, Cirtiu CM, Legrand M, Davis K, Ettinger AS, Fraser WD (2016) Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC Study. Chemosphere 163:270–282

    CAS  Google Scholar 

  • Bauer R, Demeter I, Hasemann V, Johansen JT (1980) Structural properties of the zinc site in Cu,Zn-superoxide dismutase; perturbed angular correlation of gamma ray spectroscopy on the Cu, 111Cd-superoxide dismutase derivative. Biochem Biophys Res Commun 94:1296–1302

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Capaldo A, Gay F, Scudiero R, Trinchella F, Caputo I, Lepretti M, Marabotti A, Esposito C, Laforgia V (2016) Histological changes, apoptosis and metallothionein levels in triturus carnifex (amphibia, urodela) exposed to environmental cadmium concentrations. Aquat Toxicol 173:63–73

    CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    CAS  Google Scholar 

  • Carocho M, Ferreira IR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    CAS  Google Scholar 

  • Cesmeli S, Avci CB (2018) Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J Drug Target 5:1–5

    Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    CAS  Google Scholar 

  • Cheng FM, Zhao NC, Xu HM, Li Y, Zhang WF, Zhu ZW, Chen MX (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in Southeast China. Sci Total Environ 359:156–166

    CAS  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    CAS  Google Scholar 

  • Ellman GI (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  Google Scholar 

  • Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    CAS  Google Scholar 

  • Engates KE, Shipley HJ (2011) Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ Sci Pollut Res 18:386–395

    CAS  Google Scholar 

  • Fang Q, Shi Q, Guo Y, Hua J, Wang X, Zhou B (2016) Enhanced bioconcentration of bisphenol A in the presence of nano-TiO2 can lead to adverse reproductive outcomes in zebrafish. Environ Sci Technol 50:1005–1013

    CAS  Google Scholar 

  • Fowler BA (2009) Monitoring of human populations for early markers of cadmium toxicity: a review. Toxicol Appl Pharmacol 238:294–300

    CAS  Google Scholar 

  • Franco R, Cidlowsk JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314

    CAS  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262

    CAS  Google Scholar 

  • Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    CAS  Google Scholar 

  • Guo M, Xu X, Yan X, Wang S, Gao S, Zhu S (2013) In vivo biodistribution and synergistic toxicity of silica nanoparticles and cadmium chloride in mice. J Hazard Mater 260:780–788

    CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Roman F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466:1047–1059

    Google Scholar 

  • Ishikawa K, Ishii H, Saito T (2006) DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol 25:406–411

    CAS  Google Scholar 

  • Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Wu W, Gui X, Le VN, Han Y, Wang Y, Xing B, Liu L, Cao W (2017) Jointed toxicity of TiO2 NPs and cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93

    CAS  Google Scholar 

  • Kocbek P, Teskac K, Kreft ME, Kristl J (2010) Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6:1908–1917

    CAS  Google Scholar 

  • Li L, Sillanpaa M, Schultz E (2017) Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna. J Nanopart Res 19:223

    Google Scholar 

  • Liu S, Jiang W, Wu B, Yu J, Yu H, Zhang XX, Torres-Duarte C, Cherr GN (2016) Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters. Nanotoxicology 10:597–606

    CAS  Google Scholar 

  • Liu Y, Martin M (2001) p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis 22:851–860

    CAS  Google Scholar 

  • Lu H, Zhao B, Pan R, Yao J, Qiu J, Luo L, Liu Y (2014) Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv 4:1128–1132

    CAS  Google Scholar 

  • Manesh RR, Grassi G, Bergami E, Marques-Santos LF, Faleri C, Liberatori G, Corsi I (2018) Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol Environ Saf 148:359–366

    CAS  Google Scholar 

  • McGarry T, Biniecka M, Veale DJ, Fearon U (2018) Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 125:15–24

    CAS  Google Scholar 

  • Miranda RR, Bezerra AG Jr, Oliveira Ribeiro CA, Randi MA, Voigt CL, Skytte L, Rasmussen KL, Kjeldsen F, Filipak Neto F (2017) Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicol in Vitro 40:134–143

    CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    CAS  Google Scholar 

  • Nzengue Y, Steiman R, Garrel C, Lefèbvre E, Guiraud P (2008) Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium. Toxicology 243:193–206

    CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  Google Scholar 

  • Peng F, Setyawati MI, Tee JK, Ding X, Wang J, Nga ME, Ho HK, Leong DT (2019) Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotechnol 14:279–286

    CAS  Google Scholar 

  • Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233

    CAS  Google Scholar 

  • Rosenfeldt RR, Seitz F, Schulz R, Bundschuh M (2014) Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: a factorial approach using Daphnia magna. Environ Sci Technol 48:6965–6972

    CAS  Google Scholar 

  • Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, Chong HC, Tan SM, Loo SC, Ng KW, Xie JP, Ong CN, Tan NS, Leong DT (2013) Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the hemophilic interaction of VE-cadherin. Nat Commun 4:1673

    CAS  Google Scholar 

  • Shaban M, Poostforooshan J, Weber AP (2017) Surface-initiated polymerization on unmodified inorganic semiconductor nanoparticles via surfactant-free aerosol-based synthesis toward core–shell nanohybrids with a tunable shell thickness. J Mater Chem A 5:18651–18663

    CAS  Google Scholar 

  • Shandilya N, Bihan OL, Bressot C, Morgeneyer M (2015) Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather. Environ Sci Technol 49:2163–2170

    CAS  Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870

    CAS  Google Scholar 

  • Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M (2013) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One 8:e69534

    CAS  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    CAS  Google Scholar 

  • Stacchiotti A, Morandini F, Bettoni F, Schena I, Lavazza A, Giovanni P, Apostoli P, Rezzani R, Francesca M (2009) Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead. Toxicology 264:215–224

    CAS  Google Scholar 

  • Tan C, Fan WH, Wang WX (2012) Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in Daphnia magna. Environ Sci Technol 46:469–476

    CAS  Google Scholar 

  • Tan C, Wang WX (2014) Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environ Pollut 186:36–42

    CAS  Google Scholar 

  • Tan C, Wang WX (2017) Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna. Environ Pollut 23:311–318

    Google Scholar 

  • Tee JK, Setyawati MI, Peng F, Leong DT, Ho HK (2019) Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness. Nanotoxicology 13:682–700

    CAS  Google Scholar 

  • Thevenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239

    CAS  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    CAS  Google Scholar 

  • Wang X, Liu Y, Wang J, Nie Y, Chen S, Hei TK, Deng Z, Wu L, Zhao G, Xu A (2017) Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 11:978–995

    CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    CAS  Google Scholar 

  • Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu H, Yang X, Zeng FD (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after sub chronic dermal exposure. Toxicol Lett 191:1–8

    CAS  Google Scholar 

  • Wu J, Shi Y, Asweto CO, Feng L, Yang X, Zhang Y, Hu H, Duan J, Sun Z (2016) Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells. Environ Sci Pollut Res 23:23134–23144

    CAS  Google Scholar 

  • Yang WW, Miao AJ, Yang LY (2012) Cd2+ toxicity to green alga Chlamydomonas reinhardtii as influenced by its adsorption of TiO2 engineered nanoparticles. PLoS One 7:1–8

    Google Scholar 

  • Yang WW, Wang Y, Huang B, Wang NX, Wei ZB, Luo J, Miao AJ, Yang LY (2014) TiO2 nanoparticles act as a carrier of cd bioaccumulation in the ciliate Tetrahymena thermophila. Environ Sci Technol 48:7568–7575

    CAS  Google Scholar 

  • Zande M, Undas AK, Kramer E, Monopoli MP, Peters RJ, Garry D, Fernandes EA, Hendriksen PJ, Marvin HP, Peijnenburg AA, Bouwmeester H (2016) Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology 10:1431–1441

    Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG- 1439-72.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maqusood Ahamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamed, M., Akhtar, M.J., Alaizeri, Z.M. et al. TiO2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells. Environ Sci Pollut Res 27, 10425–10435 (2020). https://doi.org/10.1007/s11356-019-07130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07130-6

Keywords

Navigation