Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate immunity in diabetic kidney disease

Abstract

Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein–kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.

Key points

  • Renal inflammation involving the upregulation of inflammatory signalling pathways, release of cytokines and chemokines and infiltration of immune cells, contributes to the pathogenesis and progression of diabetic kidney disease (DKD).

  • In the diabetic kidney, recognition of endogenous danger-associated molecular patterns by Toll-like receptors (TLRs), particularly TLR2 and TLR4, induces inflammatory responses.

  • Inflammasome activation not only amplifies renal inflammation but also has a role in the development of fibrosis; pharmacological agents that target inflammasome components may have therapeutic potential in DKD.

  • The kallikrein–kinin system and protease-activated receptor signalling have been implicated in the progression of DKD; inhibition of kallikrein using kallistatin is renoprotective in diabetic mice.

  • The complement system is activated in human DKD; C5a and C3a receptor antagonists improve kidney fibrosis in rats with DKD, supporting a pathogenetic role of complement in this disease.

  • Targeting inflammatory signalling pathways is a promising novel therapeutic approach for DKD; further studies of the roles of innate immunity pathways in DKD may lead to the identification of novel drug targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of inflammation in the pathogenesis of diabetic kidney disease.
Fig. 2: Activation of TLR4 signalling in DKD.
Fig. 3: NLRP3 inflammasome activation in DKD.
Fig. 4: The roles of the KKS and PARs in DKD.
Fig. 5: Potential mechanisms of complement activation in diabetic kidney disease.

Similar content being viewed by others

References

  1. Levey, A. S. & Coresh, J. Chronic kidney disease. Lancet 379, 165–180 (2012).

    Article  PubMed  Google Scholar 

  2. Ogurtsova, K. et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Klessens, C. Q. F. et al. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant. 32, 1322–1329 (2017).

    CAS  PubMed  Google Scholar 

  4. Nguyen, D. et al. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology 11, 226–231 (2006).

    Article  PubMed  Google Scholar 

  5. Moon, J. Y. et al. Aberrant recruitment and activation of T cells in diabetic nephropathy. Am. J. Nephrol. 35, 164–174 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Tang, S. C. et al. Bradykinin and high glucose promote renal tubular inflammation. Nephrol. Dial. Transplant. 25, 698–710 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Niewczas, M. A. et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat. Med. 25, 805–813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang, S. et al. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J. Clin. Invest. 111, 515–527 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang, S. C. & Lai, K. N. The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol. Dial. Transplant. 27, 3049–3056 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Chung, A. C. & Lan, H. Y. Chemokines in renal injury. J. Am. Soc. Nephrol. 22, 802–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Ferenbach, D., Kluth, D. C. & Hughes, J. Inflammatory cells in renal injury and repair. Semin. Nephrol. 27, 250–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Mack, M. & Yanagita, M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 87, 297–307 (2015).

    Article  PubMed  Google Scholar 

  15. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 10, 493–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perkins, B. A., Ficociello, L. H., Roshan, B., Warram, J. H. & Krolewski, A. S. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 77, 57–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saglimbene, V. et al. The long-term impact of renin-angiotensin system (RAS) inhibition on cardiorenal outcomes (LIRICO): a randomized, controlled trial. J. Am. Soc. Nephrol. 29, 2890–2899 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 369, 1892–1903 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Moreno, J. A. et al. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin. Investig. Drugs 27, 917–930 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 6, 691–704 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Vallon, V. et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Ren. Physiol 306, F194–F204 (2014).

    Article  CAS  Google Scholar 

  28. Panchapakesan, U. et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells-renoprotection in diabetic nephropathy? PLOS ONE 8, e54442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang, L. et al. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 313, E563–E576 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Butler, J. et al. Empagliflozin improves kidney outcomes in patients with or without heart failure. Circ. Heart Fail 12, e005875 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Cherney, D. Z. I. et al. Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int. 93, 231–244 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Chan, G. C. W. & Tang, S. C. W. SGLT2 inhibitor empagliflozin: finally at the latter stage of understanding? Kidney Int. 93, 22–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. DeFronzo, R. A., Norton, L. & Abdul-Ghani, M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat. Rev. Nephrol. 13, 11–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Gerstein, H. C. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394, 131–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Zavattaro, M. et al. One-year treatment with liraglutide improved renal function in patients with type 2 diabetes: a pilot prospective study. Endocrine 50, 620–626 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. von Scholten, B. J., Hansen, T. W., Goetze, J. P., Persson, F. & Rossing, P. Glucagon-like peptide 1 receptor agonist (GLP-1 RA): long-term effect on kidney function in patients with type 2 diabetes. J. Diabetes Complications 29, 670–674 (2015).

    Article  Google Scholar 

  40. Kodera, R. et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia 54, 965–978 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Park, C. W. et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227–1238 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Balakumar, P., Kadian, S. & Mahadevan, N. Are PPAR alpha agonists a rational therapeutic strategy for preventing abnormalities of the diabetic kidney? Pharmacol. Res. 65, 430–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Kohan, D. E. & Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 86, 896–904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dhaun, N., Webb, D. J. & Kluth, D. C. Endothelin-1 and the kidney-beyond BP. Br. J. Pharmacol. 167, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anguiano, L., Riera, M., Pascual, J. & Soler, M. J. Endothelin blockade in diabetic kidney disease. J. Clin. Med. 4, 1171–1192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Saleh, M. A., Boesen, E. I., Pollock, J. S., Savin, V. J. & Pollock, D. M. Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension 56, 942–949 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Giunti, S., Barutta, F., Perin, P. C. & Gruden, G. Targeting the MCP-1/CCR2 system in diabetic kidney disease. Curr. Vasc. Pharmacol. 8, 849–860 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Kang, Y. S. et al. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. 78, 883–894 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Seok, S. J. et al. Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrol. Dial. Transplant. 28, 1700–1710 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Sullivan, T. et al. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am. J. Physiol. Ren. Physiol. 305, F1288–F1297 (2013).

    Article  CAS  Google Scholar 

  52. de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 3, 687–696 (2015).

    Article  PubMed  CAS  Google Scholar 

  53. Menne, J. et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transplant. 32, 307–315 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Gale, J. D. et al. Effect of PF-04634817, an oral CCR2/5 chemokine receptor antagonist, on albuminuria in adults with overt diabetic nephropathy. Kidney Int. Rep. 3, 1316–1327 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tsalamandris, S. et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur. Cardiol. 14, 50–59 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jiang, T. et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59, 850–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chin, M. P. et al. Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J. Card. Fail. 20, 953–958 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Chin, M. P. et al. Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study. Am. J. Nephrol. 47, 40–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Nangaku, M., Shimazak, R. & Akizawa, T. Bardoxolone methyl improved GFR measured by standard inulin clearance: the TSUBAKI study [abstract SA-OR122]. J. Am. Soc. Nephrol. 28, B1 (2017).

    Article  Google Scholar 

  62. Wong, C. K. et al. Aberrant expression of soluble co-stimulatory molecules and adhesion molecules in type 2 diabetic patients with nephropathy. J. Clin. immunol. 28, 36–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Li, H. Y. et al. Serum vascular adhesion protein-1 predicts end-stage renal disease in patients with type 2 diabetes. PLOS ONE 11, e0147981 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Salmi, M., Kalimo, K. & Jalkanen, S. Induction and function of vascular adhesion protein-1 at sites of inflammation. J. Exp. Med. 178, 2255–2260 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Salmi, M. & Jalkanen, S. Vascular adhesion protein-1: a cell surface amine oxidase in translation. Antioxid. Redox Signal. 30, 314–332 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. de Zeeuw, D. et al. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM): a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 6, 925–933 (2018).

    Article  PubMed  Google Scholar 

  67. Marrero, M. B., Banes-Berceli, A. K., Stern, D. M. & Eaton, D. C. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 290, F762–F768 (2006).

    Article  CAS  Google Scholar 

  68. Berthier, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, H. et al. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 92, 909–921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tuttle, K. R. et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 33, 1950–1959 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA 95, 588–593 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Lin, M. & Tang, S. C. Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol. Dial. Transplant. 29, 746–754 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Rock, K. L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moresco, E. M., LaVine, D. & Beutler, B. Toll-like receptors. Curr. Biol. 21, R488–R493 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Devaraj, S. et al. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J. Clin. Endocrinol. Metab. 93, 578–583 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Devaraj, S., Dasu, M. R., Park, S. H. & Jialal, I. Increased levels of ligands of toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia 52, 1665–1668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dasu, M. R., Devaraj, S., Park, S. & Jialal, I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33, 861–868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu, X. H. et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104, 3103–3108 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Koc, M. et al. Toll-like receptor expression in monocytes in patients with chronic kidney disease and haemodialysis: relation with inflammation. Nephrol. Dial. Transplant. 26, 955–963 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Xu, Y. et al. Structural basis for signal transduction by the toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. De Nardo, D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 74, 181–189 (2015).

    Article  PubMed  CAS  Google Scholar 

  85. Yiu, W. H., Lin, M. & Tang, S. C. Toll-like receptor activation: from renal inflammation to fibrosis. Kidney Int. Suppl. (2011) 4, 20–25 (2014).

    Article  CAS  Google Scholar 

  86. Wu, H. et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J. Clin. Invest. 117, 2847–2859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pulskens, W. P. et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLOS ONE 3, e3596 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chen, J. et al. Toll-like receptor 4 regulates early endothelial activation during ischemic acute kidney injury. Kidney Int. 79, 288–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Tang, S. C. et al. Additive renoprotective effects of B2-kinin receptor blocker and PPAR-γ agonist in uninephrectomized db/db mice. Lab. Invest. 91, 1351–1362 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Meldrum, K. K. et al. Profibrotic effect of interleukin-18 in HK-2 cells is dependent on stimulation of the toll-like receptor 4 (TLR4) promoter and increased TLR4 expression. J. Biol. Chem. 287, 40391–40399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin, M. et al. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 86–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Verzola, D. et al. Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int. 86, 1229–1243 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Ma, J. et al. TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PLOS ONE 9, e97985 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Jialal, I., Major, A. M. & Devaraj, S. Global Toll-like receptor 4 knockout results in decreased renal inflammation, fibrosis and podocytopathy. J. Diabetes Complications 28, 755–761 (2014).

    Article  PubMed  Google Scholar 

  95. Ma, J. et al. Requirement for TLR2 in the development of albuminuria, inflammation and fibrosis in experimental diabetic nephropathy. Int. J. Clin. Exp. Pathol. 7, 481–495 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wei, M., Li, Z., Xiao, L. & Yang, Z. Effects of ROS-relative NF-κB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury. Mol. Immunol. 68, 261–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Dasu, M. R., Devaraj, S., Zhao, L., Hwang, D. H. & Jialal, I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57, 3090–3098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mudaliar, H. et al. The role of toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am. J. Physiol. Ren. Physiol. 305, F143–F154 (2013).

    Article  CAS  Google Scholar 

  99. Kaur, H., Chien, A. & Jialal, I. Hyperglycemia induces toll like receptor 4 expression and activity in mouse mesangial cells: relevance to diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 303, F1145–F1150 (2012).

    Article  CAS  Google Scholar 

  100. Schaefer, L. et al. The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J. Clin. Invest. 115, 2223–2233 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lewis, A. et al. Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis. Histol. Histopathol. 23, 731–739 (2008).

    PubMed  Google Scholar 

  102. Jheng, H. F. et al. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis. Model. Mech. 8, 1311–1321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Shi, H. et al. High mobility group box 1 in diabetic nephropathy. Exp. Ther. Med. 14, 2431–2433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, Q., Guan, X., Zuo, X., Wang, J. & Yin, W. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta Pharm. Sin. B 6, 183–188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen, Y., Qiao, F., Zhao, Y., Wang, Y. & Liu, G. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. Int. J. Clin. Exp. Pathol. 8, 6683–6691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, B., Li, Y., Liu, Y. & Xu, Z. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J. Cell Physiol. 234, 21249–21259 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Yao, D., Wang, S., Wang, M. & Lu, W. Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation end products-nuclear factor-κB signaling pathway. Mol. Med. Rep. 18, 3625–3630 (2018).

    CAS  PubMed  Google Scholar 

  108. Jin, J. et al. Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux. J. Diabetes 11, 826–836 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Takahashi, T. & Harris, R. C. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice. J. Diabetes Res. 2014, 590541 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lin, M. et al. The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy. Kidney Int. 83, 887–900 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Cha, J. J. et al. Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice. Endocrinology 154, 2144–2155 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, Z. M. et al. Low expression of miR-203 promoted diabetic nephropathy via increasing TLR4. Eur. Rev. Med. Pharmacol. Sci. 22, 5627–5634 (2018).

    PubMed  Google Scholar 

  113. Ji, T.-T. et al. Long noncoding RNA Gm6135 functions as a competitive endogenous RNA to regulate toll-like receptor 4 expression by sponging miR-203-3p in diabetic nephropathy. J. Cell. Physiol. 234, 6633–6641 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Denby, L. & Baker, A. H. Targeting non-coding RNA for the therapy of renal disease. Curr. Opin. Pharmacol. 27, 70–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Caruso, R., Warner, N., Inohara, N. & Nunez, G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41, 898–908 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Mulay, S. R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int. 96, 58–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Moossavi, M., Parsamanesh, N., Bahrami, A., Atkin, S. L. & Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer 17, 158 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Luan, J. & Ju, D. Inflammasome: a double-edged sword in liver diseases. Front. Immunol. 9, 2201 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Man, S. M. & Kanneganti, T. D. Regulation of inflammasome activation. Immunol. Rev. 265, 6–21 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, Y., Xu, Z., Ma, F., Jia, Y. & Wang, G. Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/caspase-1 signaling pathway. Biomed. Pharmacother. 107, 1393–1401 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Fang, L. et al. Involvement of endoplasmic reticulum stress in albuminuria induced inflammasome activation in renal proximal tubular cells. PLOS ONE 8, e72344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shahzad, K. et al. Caspase-1, but not caspase-3, promotes diabetic nephropathy. J. Am. Soc. Nephrol. 27, 2270–2275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shahzad, K. et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 87, 74–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Gao, P. et al. Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy. Biochim. Biophys. Acta 1843, 2448–2460 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Gao, P. et al. NADPH oxidase-induced NALP3 inflammasome activation is driven by thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia. J. Diabetes Res. 2015, 504761 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Fakhruddin, S., Alanazi, W. & Jackson, K. E. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J. Diabetes Res. 2017, 8379327 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Zhao, M. et al. Angiotensin II stimulates the NLRP3 inflammasome to induce podocyte injury and mitochondrial dysfunction. Kidney Dis. 4, 83–94 (2018).

    Article  Google Scholar 

  130. Wu, M. et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol. Cell Endocrinol. 478, 115–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Tang, S. C., Yiu, W. H., Lin, M. & Lai, K. N. Diabetic nephropathy and proximal tubular damage. J. Ren. Nutr. 25, 230–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Gilbert, R. E. Proximal tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes 66, 791–800 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Song, S. et al. Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. J. Mol. Endocrinol. 61, 101–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Qiao, Y. et al. Spleen tyrosine kinase promotes NLR family pyrin domain containing 3 inflammasome-mediated IL-1β secretion via c-Jun N-terminal kinase activation and cell apoptosis during diabetic nephropathy. Mol. Med. Rep. 18, 1995–2008 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, K. et al. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. FASEB J. 33, 4571–4585 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Wei, P. Z. & Szeto, C. C. Mitochondrial dysfunction in diabetic kidney disease. Clin. Chim. Acta 496, 108–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Han, Y. et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol. 16, 32–46 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug. Discov. 17, 588–606 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Ozaki, E., Campbell, M. & Doyle, S. L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J. Inflamm. Res. 8, 15–27 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Murphy, A. J. et al. IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metab. 23, 155–164 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, W. et al. Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J. Immunol. 190, 1239–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Sharma, J. N. Role of tissue kallikrein-kininogen-kinin pathways in the cardiovascular system. Arch. Med. Res. 37, 299–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Chao, J. et al. Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol. Chem. 391, 345–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Calixto, J. B. et al. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br. J. Pharmacol. 143, 803–818 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chao, J. & Chao, L. Biochemistry, regulation and potential function of kallistatin. Biol. Chem. Hoppe Seyler 376, 705–713 (1995).

    CAS  PubMed  Google Scholar 

  147. Ruggenenti, P., Cravedi, P. & Remuzzi, G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol. 6, 319–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Kuoppala, A., Lindstedt, K. A., Saarinen, J., Kovanen, P. T. & Kokkonen, J. O. Inactivation of bradykinin by angiotensin-converting enzyme and by carboxypeptidase N in human plasma. Am. J. Physiol. Heart Circ. Physiol. 278, H1069–H1074 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Tschope, C. et al. Kinins are involved in the antiproteinuric effect of angiotensin-converting enzyme inhibition in experimental diabetic nephropathy. Int. Immunopharmacol. 3, 335–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Buleon, M. et al. Pharmacological blockade of B2-kinin receptor reduces renal protective effect of angiotensin-converting enzyme inhibition in db/db mice model. Am. J. Physiol. Ren. Physiol. 294, F1249–F1256 (2008).

    Article  CAS  Google Scholar 

  151. Kwak, S. J. et al. Local kallikrein-kinin system is involved in podocyte apoptosis under diabetic conditions. Apoptosis 16, 478–490 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Bodin, S. et al. Kallikrein protects against microalbuminuria in experimental type I diabetes. Kidney Int. 76, 395–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Vitova, L. et al. Early urinary biomarkers of diabetic nephropathy in type 1 diabetes mellitus show involvement of kallikrein-kinin system. BMC Nephrol. 18, 112 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Campbell, D. J., Kelly, D. J., Wilkinson-Berka, J. L., Cooper, M. E. & Skinner, S. L. Increased bradykinin and “normal” angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2)27 rats. Kidney Int. 56, 211–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Campbell, D. J. et al. Increased tissue kallikrein levels in type 2 diabetes. Diabetologia 53, 779–785 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Tang, S. C., Leung, J. C. & Lai, K. N. The kallikrein-kinin system. Contrib. Nephrol. 170, 145–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Kakoki, M., McGarrah, R. W., Kim, H. S. & Smithies, O. Bradykinin B1 and B2 receptors both have protective roles in renal ischemia/reperfusion injury. Proc. Natl Acad. Sci. USA 104, 7576–7581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pereira, R. L. et al. Balance between the two kinin receptors in the progression of experimental focal and segmental glomerulosclerosis in mice. Dis. Model. Mech. 7, 701–710 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Mage, M. et al. Induction of B1 receptors in streptozotocin diabetic rats: possible involvement in the control of hyperglycemia-induced glomerular Erk 1 and 2 phosphorylation. Can. J. Physiol. Pharmacol. 80, 328–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Kakoki, M. et al. Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neuropathy, and bone mineral loss in Akita diabetic mice. Proc. Natl Acad. Sci. USA 107, 10190–10195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, W. et al. Exogenous kallikrein protects against diabetic nephropathy. Kidney Int. 90, 1023–1036 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Yiu, W. H. et al. Tissue kallikrein mediates pro-inflammatory pathways and activation of protease-activated receptor-4 in proximal tubular epithelial cells. PLOS ONE 9, e88894 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Tan, Y., Wang, B., Keum, J. S. & Jaffa, A. A. Mechanisms through which bradykinin promotes glomerular injury in diabetes. Am. J. Physiol. Ren. Physiol. 288, F483–F492 (2005).

    Article  CAS  Google Scholar 

  164. Qadri, F. & Bader, M. Kinin B1 receptors as a therapeutic target for inflammation. Expert. Opin. Ther. Targets 22, 31–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Ni, A., Chao, L. & Chao, J. Transcription factor nuclear factor kappaB regulates the inducible expression of the human B1 receptor gene in inflammation. J. Biol. Chem. 273, 2784–2791 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Liu, Y. et al. Depletion of endogenous kallistatin exacerbates renal and cardiovascular oxidative stress, inflammation, and organ remodeling. Am. J. Physiol. Ren. Physiol. 303, F1230–F1238 (2012).

    Article  CAS  Google Scholar 

  167. Zhou, S. et al. Effects of kallistatin on oxidative stress and inflammation on renal ischemia-reperfusion injury in mice. Curr. Vasc. Pharmacol. 13, 265–273 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Li, P. et al. Human kallistatin administration reduces organ injury and improves survival in a mouse model of polymicrobial sepsis. Immunology 142, 216–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yiu, W. H. et al. Kallistatin protects against diabetic nephropathy in db/db mice by suppressing AGE-RAGE-induced oxidative stress. Kidney Int. 89, 386–398 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Adams, M. N. et al. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 130, 248–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Soh, U. J., Dores, M. R., Chen, B. & Trejo, J. Signal transduction by protease-activated receptors. Br. J. Pharmacol. 160, 191–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mercer, P. F. & Chambers, R. C. Coagulation and coagulation signalling in fibrosis. Biochim. Biophys. Acta 1832, 1018–1027 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Isermann, B. Homeostatic effects of coagulation protease-dependent signaling and protease activated receptors. J. Thromb. Haemost. 15, 1273–1284 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Boire, A. et al. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Xu, Y. et al. Constitutive expression and modulation of the functional thrombin receptor in the human kidney. Am. J. Pathol. 146, 101–110 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Grandaliano, G. et al. Regenerative and proinflammatory effects of thrombin on human proximal tubular cells. J. Am. Soc. Nephrol. 11, 1016–1025 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Vesey, D. A., Hooper, J. D., Gobe, G. C. & Johnson, D. W. Potential physiological and pathophysiological roles for protease-activated receptor-2 in the kidney. Nephrology 12, 36–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Gui, Y., Loutzenhiser, R. & Hollenberg, M. D. Bidirectional regulation of renal hemodynamics by activation of PAR1 and PAR2 in isolated perfused rat kidney. Am. J. Physiol. Ren. Physiol. 285, F95–F104 (2003).

    Article  CAS  Google Scholar 

  179. Hocherl, K., Gerl, M. & Schweda, F. Proteinase-activated receptors 1 and 2 exert opposite effects on renal renin release. Hypertension 58, 611–618 (2011).

    Article  PubMed  CAS  Google Scholar 

  180. Madhusudhan, T. et al. Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. Blood 119, 874–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Palygin, O., Ilatovskaya, D. V. & Staruschenko, A. Protease-activated receptors in kidney disease progression. Am. J. Physiol. Ren. Physiol. 311, F1140–F1144 (2016).

    Article  CAS  Google Scholar 

  182. Jansen, M. P. B., Florquin, S. & Roelofs, J. The role of platelets in acute kidney injury. Nat. Rev. Nephrol. 14, 457–471 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Waasdorp, M., Duitman, J., Florquin, S. & Spek, C. A. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Sci. Rep. 6, 33030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cunningham, M. A. et al. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J. Exp. Med. 191, 455–462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Grandaliano, G. et al. Protease-activated receptor-2 expression in IgA nephropathy: a potential role in the pathogenesis of interstitial fibrosis. J. Am. Soc. Nephrol. 14, 2072–2083 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Wang, Y. et al. Role of protease-activated receptor 2 in regulating focal segmental glomerulosclerosis. Cell Physiol. Biochem. 41, 1147–1155 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Du, C. et al. Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway. Biochem. J. 474, 2733–2747 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Huang, M. J. et al. Blood coagulation system in patients with chronic kidney disease: a prospective observational study. BMJ Open 7, e014294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Pan, L. et al. Clinical significance of hemostatic parameters in the prediction for type 2 diabetes mellitus and diabetic nephropathy. Dis. Markers 2018, 5214376 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Sun, J. & Liu, C. Correlation of vascular endothelial function and coagulation factors with renal function and inflammatory factors in patients with diabetic nephropathy. Exp. Ther. Med. 16, 4167–4171 (2018).

    PubMed  PubMed Central  Google Scholar 

  191. Sumi, A. et al. Roles of coagulation pathway and factor Xa in the progression of diabetic nephropathy in db/db mice. Biol. Pharm. Bull. 34, 824–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Sakai, T. et al. Up-regulation of protease-activated receptor-1 in diabetic glomerulosclerosis. Biochem. Biophys. Res. Commun. 384, 173–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Kaizuka, M., Yamabe, H., Osawa, H., Okumura, K. & Fujimoto, N. Thrombin stimulates synthesis of type IV collagen and tissue inhibitor of metalloproteinases-1 by cultured human mesangial cells. J. Am. Soc. Nephrol. 10, 1516–1523 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Sharma, R. et al. Thrombin-induced podocyte injury is protease-activated receptor dependent. J. Am. Soc. Nephrol. 28, 2618–2630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang, H. et al. Low but sustained coagulation activation ameliorates glucose-induced podocyte apoptosis: protective effect of factor V Leiden in diabetic nephropathy. Blood 117, 5231–5242 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Cohen, A. T. et al. Comparison of the novel oral anticoagulants apixaban, dabigatran, edoxaban, and rivaroxaban in the initial and long-term treatment and prevention of venous thromboembolism: systematic review and network meta-analysis. PLOS ONE 10, e0144856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Feldberg, J. et al. A systematic review of direct oral anticoagulant use in chronic kidney disease and dialysis patients with atrial fibrillation. Nephrol. Dial. Transplant. 34, 265–277 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Oe, Y. et al. Coagulation factor Xa and protease-activated receptor 2 as novel therapeutic targets for diabetic nephropathy. Arterioscler. Thromb. Vasc. Biol. 36, 1525–1533 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Waasdorp, M., Duitman, J., Florquin, S. & Spek, A. C. Protease activated receptor 2 in diabetic nephropathy: a double edged sword. Am. J. Transl. Res. 9, 4512–4520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Arif, S. A., D’Souza, J., Gil, M. & Gim, S. Vorapaxar for reduction of thrombotic cardiovascular events in myocardial infarction and peripheral artery disease. Am. J. Health Syst. Pharm. 72, 1615–1622 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Waasdorp, M., Duitman, J., Florquin, S. & Spek, C. A. Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice. Oncotarget 9, 21655–21662 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Waasdorp, M., Florquin, S., Duitman, J. & Spek, C. A. Pharmacological PAR-1 inhibition reduces blood glucose levels but does not improve kidney function in experimental type 2 diabetic nephropathy. FASEB J. 33, 10966–10972 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Ungar, L. et al. Stroke outcomes with vorapaxar versus placebo in patients with acute coronary syndromes: insights from the TRACER trial. J. Am. Heart Assoc. 7, e009609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hajishengallis, G., Reis, E. S., Mastellos, D. C., Ricklin, D. & Lambris, J. D. Novel mechanisms and functions of complement. Nat. Immunol. 18, 1288–1298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hansen, S. et al. Collectin 11 (CL-11, CL-K1) is a MASP-1/3-associated plasma collectin with microbial-binding activity. J. Immunol. 185, 6096–6104 (2010).

    Article  CAS  PubMed  Google Scholar 

  206. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Harris, C. L., Pouw, R. B., Kavanagh, D., Sun, R. & Ricklin, D. Developments in anti-complement therapy; from disease to clinical trial. Mol. Immunol. 102, 89–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Hillmen, P. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 355, 1233–1243 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Tang, S., Zhou, W., Sheerin, N. S., Vaughan, R. W. & Sacks, S. H. Contribution of renal secreted complement C3 to the circulating pool in humans. J. Immunol. 162, 4336–4341 (1999).

    CAS  PubMed  Google Scholar 

  211. Biancone, L. et al. Alternative pathway activation of complement by cultured human proximal tubular epithelial cells. Kidney Int. 45, 451–460 (1994).

    Article  CAS  PubMed  Google Scholar 

  212. Ricklin, D., Mastellos, D. C., Reis, E. S. & Lambris, J. D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14, 26–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Wong, E. K., Goodship, T. H. & Kavanagh, D. Complement therapy in atypical haemolytic uraemic syndrome (aHUS). Mol. Immunol. 56, 199–212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Smith, R. J. H. et al. C3 glomerulopathy – understanding a rare complement-driven renal disease. Nat. Rev. Nephrol. 15, 129–143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Zipfel, P. F. et al. Complement inhibitors in clinical trials for glomerular diseases. Front. Immunol. 10, 2166 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Tatapudi, V. S. & Montgomery, R. A. Therapeutic modulation of the complement system in kidney transplantation: clinical indications and emerging drug leads. Front. Immunol. 10, 2306 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Biglarnia, A. R., Huber-Lang, M., Mohlin, C., Ekdahl, K. N. & Nilsson, B. The multifaceted role of complement in kidney transplantation. Nat. Rev. Nephrol. 14, 767–781 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Flyvbjerg, A. The role of the complement system in diabetic nephropathy. Nat. Rev. Nephrol. 13, 311–318 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Yiu, W. H. et al. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol. Dial. Transplant. 33, 1323–1332 (2018).

    Article  CAS  PubMed  Google Scholar 

  220. Sircar, M. et al. Complement 7 is up-regulated in human early diabetic kidney disease. Am. J. Pathol. 188, 2147–2154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sun, Z. J. et al. Complement deposition on renal histopathology of patients with diabetic nephropathy. Diabetes Metab. 45, 363–368 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Vaisar, T. et al. Urine complement proteins and the risk of kidney disease progression and mortality in type 2 diabetes. Diabetes Care 41, 2361–2369 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zheng, J. M. et al. Pathological significance of urinary complement activation in diabetic nephropathy: a full view from the development of the disease. J. Diabetes Investig. 10, 738–744 (2019).

    Article  PubMed  Google Scholar 

  224. Fujita, T. et al. Complement activation accelerates glomerular injury in diabetic rats. Nephron 81, 208–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  225. Wang, H. et al. The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb. Haemost. 108, 1141–1153 (2012).

    Article  PubMed  CAS  Google Scholar 

  226. Li, L. et al. C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism 64, 597–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  227. Li, L. et al. C3a receptor antagonist ameliorates inflammatory and fibrotic signals in type 2 diabetic nephropathy by suppressing the activation of TGF-β/smad3 and IKBα pathway. PLOS ONE 9, e113639 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Muller, L. M. et al. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis. 41, 281–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  229. Kato, S. et al. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 3, 1526–1533 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Research Grants Council (RGC, grant nos. C7018-16G, 17119818, 17151716), the Health and Medical Research Fund (HMRF, grant no. 05163596) of Hong Kong, the National Natural Science Fund (NSFC, grant no. 81870496) of China and by philanthropic donations from Winston Leung, K. K. Chan, Rita Liu (L & T Charitable Foundation Ltd.) and an Endowment Fund established at the University of Hong Kong for the Yu Professorship in Nephrology awarded to S.C.W.T.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sydney C. W. Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks Jesus Egido, Jun Wada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Sterile inflammation

Pathogen-free inflammation triggered by damage-associated molecular patterns that are released by cells in response to stress.

Homeostasis model assessment–insulin resistance

HOMA-IR. A method for evaluation of insulin sensitivity from basal (fasting) blood glucose and insulin levels.

Factor V Leiden (FVL) mutation

A genetic point mutation (R506Q) in the gene that encodes human coagulation factor V that results in resistance of factor V to inactivation by activated protein C and an increase in blood clotting. Carriers of the FVL mutation have an increased risk of venous thrombosis.

Lectins

Pattern recognition molecules that contain a C-type lectin domain (also known as a carbohydrate recognition domain).

Ingenuity Pathway Analysis

IPA. A web-based software application for analysis, integration and interpretation of data from high-throughput experiments such as next generation sequencing and microarray. IPA aids in the identification of key regulators and activities of biological systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S.C.W., Yiu, W.H. Innate immunity in diabetic kidney disease. Nat Rev Nephrol 16, 206–222 (2020). https://doi.org/10.1038/s41581-019-0234-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0234-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing