Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour innervation and neurosignalling in prostate cancer

Abstract

Prostate cancer progression has been shown to be dependent on the development of autonomic nerves into the tumour microenvironment. Sympathetic nerves activate adrenergic neurosignalling that is necessary in early stages of tumour progression and for initiating an angiogenic switch, whereas parasympathetic nerves activate cholinergic neurosignalling resulting in tumour dissemination and metastasis. The innervation of prostate cancer seems to be initiated by neurotrophic growth factors, such as the precursor to nerve growth factor secreted by tumour cells, and the contribution of brain-derived neural progenitor cells has also been reported. Current experimental, epidemiological and clinical evidence shows the stimulatory effect of tumour innervation and neurosignalling in prostate cancer. Using nerves and neurosignalling could have value in the management of prostate cancer by predicting aggressive disease, treating localized disease through denervation and relieving cancer-associated pain in bone metastases.

Key points

  • Prostate cancer is infiltrated by autonomic nerves that actively stimulate cancer progression.

  • Autonomic nerves infiltrate the tumour microenvironment in response to tumour-derived neurotrophins and axon guidance molecules.

  • Animal models have demonstrated that adrenergic and cholinergic neurosignalling stimulates prostate cancer progression, angiogenesis, invasion and metastasis. Chemical or surgical denervation, as well as genetic or pharmacological blockade, completely inhibit these effects.

  • Attenuated tumour neurosignalling might be a key factor in the decreased incidence of prostate cancer observed in patients with spinal cord injuries or those taking β-blockers.

  • Nerves and neurotrophic growth factors could be used as biomarkers of clinically aggressive prostate cancer, or as therapeutic targets to prevent cancer progression, dissemination and cancer-induced pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Innervation and neurosignalling in prostate cancer.

Similar content being viewed by others

References

  1. Kumar, A. & Brockes, J. P. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 35, 691–699 (2012).

    CAS  PubMed  Google Scholar 

  2. Nedvetsky, P. I. et al. Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev. Cell 30, 449–462 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bower, D. V. et al. Airway branching has conserved needs for local parasympathetic innervation but not neurotransmission. BMC Biol. 12, 92 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    CAS  PubMed  Google Scholar 

  5. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A. & Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8, 552–565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24, 782–791 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liebig, C., Ayala, G., Wilks, J. A., Berger, D. H. & Albo, D. Perineural invasion in cancer: a review of the literature. Cancer 115, 3379–3391 (2009).

    CAS  PubMed  Google Scholar 

  8. Marchesi, F., Piemonti, L., Mantovani, A. & Allavena, P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 21, 77–82 (2010).

    CAS  PubMed  Google Scholar 

  9. Boilly, B., Faulkner, S., Jobling, P. & Hondermarck, H. Nerve dependence: from regeneration to cancer. Cancer Cell 31, 342–354 (2017).

    CAS  PubMed  Google Scholar 

  10. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    PubMed  Google Scholar 

  11. Zhao, C. M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Hayakawa, Y. et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21–34 (2017).

    CAS  PubMed  Google Scholar 

  13. Saloman, J. L. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl Acad. Sci. USA 113, 3078–3083 (2016).

    CAS  PubMed  Google Scholar 

  14. Renz, B. W. et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75–90.e7 (2018).

    CAS  PubMed  Google Scholar 

  15. Peterson, S. C. et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16, 400–412 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Decker, A. M. et al. Sympathetic signaling reactivates quiescent disseminated prostate cancer cells in the bone marrow. Mol. Cancer Res. 15, 1644–1655 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mauffrey, P. et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569, 672–678 (2019).

    CAS  PubMed  Google Scholar 

  19. Pundavela, J. et al. ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. Am. J. Pathol. 184, 3156–3162 (2014).

    CAS  PubMed  Google Scholar 

  20. Brundl, J. et al. Computerized quantification and planimetry of prostatic capsular nerves in relation to adjacent prostate cancer foci. Eur. Urol. 65, 802–808 (2014).

    PubMed  Google Scholar 

  21. Ayala, G. E. et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 14, 7593–7603 (2008).

    CAS  PubMed  Google Scholar 

  22. Ayala, G. E. et al. In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49, 213–223 (2001).

    CAS  PubMed  Google Scholar 

  23. Dolle, L., El Yazidi-Belkoura, I., Adriaenssens, E., Nurcombe, V. & Hondermarck, H. Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22, 5592–5601 (2003).

    CAS  PubMed  Google Scholar 

  24. Hondermarck, H. Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev. 23, 357–365 (2012).

    CAS  PubMed  Google Scholar 

  25. Pundavela, J. et al. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol. Oncol. 9, 1626–1635 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dobrenis, K., Gauthier, L. R., Barroca, V. & Magnon, C. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int. J. Cancer 136, 982–988 (2015).

    CAS  PubMed  Google Scholar 

  27. Zhang, S. et al. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J. Exp. Clin. Cancer Res. 27, 62 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. He, S. et al. The chemokine (CCL2-CCR2) signaling axis mediates perineural invasion. Mol. Cancer Res. 13, 380–390 (2015).

    CAS  PubMed  Google Scholar 

  29. Imitola, J. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc. Natl Acad. Sci. USA 101, 18117–18122 (2004).

    CAS  PubMed  Google Scholar 

  30. Belmadani, A. et al. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J. Neurosci. 25, 3995–4003 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Harnden, P. et al. The prognostic significance of perineural invasion in prostatic cancer biopsies: a systematic review. Cancer 109, 13–24 (2007).

    PubMed  Google Scholar 

  32. Turner, R. M. 2nd et al. Biopsy perineural invasion in prostate cancer patients who are candidates for active surveillance by strict and expanded criteria. Urology 102, 173–177 (2017).

    PubMed  Google Scholar 

  33. Zareba, P. et al. Perineural invasion and risk of lethal prostate cancer. Cancer Epidemiol. Biomarkers Prev. 26, 719–726 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Saeter, T. et al. The relationship between perineural invasion, tumor grade, reactive stroma and prostate cancer-specific mortality: a clinicopathologic study on a population-based cohort. Prostate 76, 207–214 (2016).

    PubMed  Google Scholar 

  35. Moreira, D. M., Fleshner, N. E. & Freedland, S. J. Baseline perineural invasion is associated with shorter time to progression in men with prostate cancer undergoing active surveillance: results from the REDEEM study. J. Urol. 194, 1258–1263 (2015).

    PubMed  Google Scholar 

  36. Loeb, S., Epstein, J. I., Humphreys, E. B. & Walsh, P. C. Does perineural invasion on prostate biopsy predict adverse prostatectomy outcomes? BJU Int. 105, 1510–1513 (2010).

    PubMed  Google Scholar 

  37. Cohn, J. A. et al. The prognostic significance of perineural invasion and race in men considering active surveillance. BJU Int. 114, 75–80 (2014).

    PubMed  Google Scholar 

  38. Ciftci, S. et al. Perineural invasion in prostate biopsy specimens is associated with increased bone metastasis in prostate cancer. Prostate 75, 1783–1789 (2015).

    PubMed  Google Scholar 

  39. Liu, H. et al. Prognostic significance of six clinicopathological features for biochemical recurrence after radical prostatectomy: a systematic review and meta-analysis. Oncotarget 9, 32238–32249 (2018).

    PubMed  Google Scholar 

  40. Zhang, L. J. et al. Perineural invasion as an independent predictor of biochemical recurrence in prostate cancer following radical prostatectomy or radiotherapy: a systematic review and meta-analysis. BMC Urol. 18, 5 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. DeLancey, J. O. et al. Evidence of perineural invasion on prostate biopsy specimen and survival after radical prostatectomy. Urology 81, 354–357 (2013).

    PubMed  Google Scholar 

  42. Peng, L. C. et al. Effects of perineural invasion on biochemical recurrence and prostate cancer-specific survival in patients treated with definitive external beam radiotherapy. Urol. Oncol. 36, 309.e7–309.e14 (2018).

    Google Scholar 

  43. Ahmad, A. S. et al. Should reporting of peri-neural invasion and extra prostatic extension be mandatory in prostate cancer biopsies? Correlation with outcome in biopsy cases treated conservatively. Oncotarget 9, 20555–20562 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Sun, G. et al. The impact of multifocal perineural invasion on biochemical recurrence and timing of adjuvant androgen-deprivation therapy in high-risk prostate cancer following radical prostatectomy. Prostate 77, 1279–1287 (2017).

    CAS  PubMed  Google Scholar 

  45. Lubig, S. et al. Quantitative perineural invasion is a prognostic marker in prostate cancer. Pathology 50, 298–304 (2018).

    PubMed  Google Scholar 

  46. Hassan, M. O. & Maksem, J. The prostatic perineural space and its relation to tumor spread: an ultrastructural study. Am. J. Surg. Pathol. 4, 143–148 (1980).

    CAS  PubMed  Google Scholar 

  47. Rodin, A. E., Larson, D. L. & Roberts, D. K. Nature of the perineural space invaded by prostatic carcinoma. Cancer 20, 1772–1779 (1967).

    CAS  PubMed  Google Scholar 

  48. Amit, M., Na'ara, S. & Gil, Z. Mechanisms of cancer dissemination along nerves. Nat. Rev. Cancer 16, 399–408 (2016).

    CAS  PubMed  Google Scholar 

  49. Coarfa, C. et al. Influence of the neural microenvironment on prostate cancer. Prostate 78, 128–139 (2018).

    CAS  PubMed  Google Scholar 

  50. Rutledge, A., Jobling, P., Walker, M. M., Denham, J. W. & Hondermarck, H. Spinal cord injuries and nerve dependence in prostate cancer. Trends Cancer 3, 812–815 (2017).

    PubMed  Google Scholar 

  51. McVary, K. T., McKenna, K. E. & Lee, C. Prostate innervation. Prostate Suppl. 8, 2–13 (1998).

    CAS  PubMed  Google Scholar 

  52. Wang, J.-M., McKenna, K. E., McVary, K. T. & Lee, C. Requirement of innervation for maintenance of structural and functional integrity in the rat prostate. Biol. Reprod. 44, 1171–1176 (1991).

    CAS  PubMed  Google Scholar 

  53. Doggweiler, R., Zermann, D. H., Ishigooka, M. & Schmidt, R. A. Botox-induced prostatic involution. Prostate 37, 44–50 (1998).

    CAS  PubMed  Google Scholar 

  54. Frisbie, J. H. & Binard, J. Low prevalence of prostatic cancer among myelopathy patients. J. Am. Paraplegia Soc. 17, 148–149 (1994).

    CAS  PubMed  Google Scholar 

  55. Frisbie, J. H. Cancer of the prostate in myelopathy patients: lower risk with higher levels of paralysis. J. Spinal Cord Med. 24, 92–94 discussion 95 (2001).

    CAS  PubMed  Google Scholar 

  56. Patel, N., Ngo, K., Hastings, J., Ketchum, N. & Sepahpanah, F. Prevalence of prostate cancer in patients with chronic spinal cord injury. PM R 3, 633–636 (2011).

    PubMed  Google Scholar 

  57. Lee, W. Y. et al. Risk of prostate and bladder cancers in patients with spinal cord injury: a population-based cohort study. Urol. Oncol. 32, e51–e57 (2014).

    Google Scholar 

  58. Barbonetti, A. et al. Risk of prostate cancer in men with spinal cord injury: a systematic review and meta-analysis. Asian J. Androl. 20, 555–560 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bartoletti, R. et al. Prostate growth and prevalence of prostate diseases in early onset spinal cord injuries. Eur. Urol. 56, 142–148 (2009).

    PubMed  Google Scholar 

  60. Benaim, E. A., Montoya, J. D., Saboorian, M. H., Litwiller, S. & Roehrborn, C. G. Characterization of prostate size, PSA and endocrine profiles in patients with spinal cord injuries. Prostate Cancer Prostatic Dis. 1, 250–255 (1998).

    CAS  PubMed  Google Scholar 

  61. Pannek, J., Bartel, P., Gocking, K. & Frotzler, A. Prostate volume in male patients with spinal cord injury: a question of nerves? BJU Int. 112, 495–500 (2013).

    PubMed  Google Scholar 

  62. Frisbie, J. H., Kumar, S., Aguilera, E. J. & Yalla, S. Prostate atrophy and spinal cord lesions. Spinal Cord 44, 24–27 (2006).

    CAS  PubMed  Google Scholar 

  63. Hammerer, P. G., McNeal, J. E. & Stamey, T. A. Correlation between serum prostate specific antigen levels and the volume of the individual glandular zones of the human prostate. J. Urol. 153, 111–114 (1995).

    CAS  PubMed  Google Scholar 

  64. Clark, M. J. et al. Testosterone replacement therapy and motor function in men with spinal cord injury: a retrospective analysis. Am. J. Phys. Med. Rehabil. 87, 281–284 (2008).

    PubMed  Google Scholar 

  65. Schopp, L. H. et al. Testosterone levels among men with spinal cord injury admitted to inpatient rehabilitation. Am. J. Phys. Med. Rehabil. 85, 678–684 quiz 685-687 (2006).

    PubMed  Google Scholar 

  66. Huang, H. F. et al. The effects of spinal cord injury on the status of messenger ribonucleic acid for TRPM 2 and androgen receptor in the prostate of the rat. J. Androl. 18, 250–256 (1997).

    CAS  PubMed  Google Scholar 

  67. Barron, T. I., Connolly, R. M., Sharp, L., Bennett, K. & Visvanathan, K. Beta blockers and breast cancer mortality: a population-based study. J. Clin. Oncol. 29, 2635–2644 (2011).

    CAS  PubMed  Google Scholar 

  68. Melhem-Bertrandt, A. et al. Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J. Clin. Oncol. 29, 2645–2652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Watkins, J. L. et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer 121, 3444–3451 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hwa, Y. L. et al. Beta-blockers improve survival outcomes in patients with multiple myeloma: a retrospective evaluation. Am. J. Hematol. 92, 50–55 (2017).

    CAS  PubMed  Google Scholar 

  71. Cardwell, C. R., Coleman, H. G., Murray, L. J., O’Sullivan, J. M. & Powe, D. G. Beta-blocker usage and prostate cancer survival: a nested case-control study in the UK Clinical Practice Research Datalink cohort. Cancer Epidemiol. 38, 279–285 (2014).

    PubMed  Google Scholar 

  72. Assayag, J., Pollak, M. N. & Azoulay, L. Post-diagnostic use of beta-blockers and the risk of death in patients with prostate cancer. Eur. J. Cancer 50, 2838–2845 (2014).

    CAS  PubMed  Google Scholar 

  73. Grytli, H. H., Fagerland, M. W., Fossa, S. D., Tasken, K. A. & Haheim, L. L. Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 73, 250–260 (2013).

    CAS  PubMed  Google Scholar 

  74. Grytli, H. H., Fagerland, M. W., Fossa, S. D. & Tasken, K. A. Association between use of beta-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur. Urol. 65, 635–641 (2014).

    CAS  PubMed  Google Scholar 

  75. Lu, H. et al. Impact of beta-blockers on prostate cancer mortality: a meta-analysis of 16,825 patients. Onco Targets Ther. 8, 985–990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Weberpals, J. et al. Immortal time bias in pharmacoepidemiological studies on cancer patient survival: empirical illustration for beta-blocker use in four cancers with different prognosis. Eur. J. Epidemiol. 32, 1019–1031 (2017).

    PubMed  Google Scholar 

  77. Weberpals, J., Jansen, L., Carr, P. R., Hoffmeister, M. & Brenner, H. Beta blockers and cancer prognosis – The role of immortal time bias: a systematic review and meta-analysis. Cancer Treat. Rev. 47, 1–11 (2016).

    CAS  PubMed  Google Scholar 

  78. Batty, G. D., Russ, T. C., Stamatakis, E. & Kivimaki, M. Psychological distress in relation to site specific cancer mortality: pooling of unpublished data from 16 prospective cohort studies. BMJ 356, j108 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Prasad, S. M. et al. Effect of depression on diagnosis, treatment, and mortality of men with clinically localized prostate cancer. J. Clin. Oncol. 32, 2471–2478 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Zhu, J. et al. First-onset mental disorders after cancer diagnosis and cancer-specific mortality: a nationwide cohort study. Ann. Oncol. 28, 1964–1969 (2017).

    CAS  PubMed  Google Scholar 

  81. Hassan, S. et al. Behavioral stress accelerates prostate cancer development in mice. J. Clin. Invest. 123, 874–886 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheng, Y. et al. Depression promotes prostate cancer invasion and metastasis via a sympathetic-cAMP-FAK signaling pathway. Oncogene 37, 2953–2966 (2018).

    CAS  PubMed  Google Scholar 

  83. Cheng, Y. et al. Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells. Clin. Cancer Res. 25, 2621–2632 (2019).

    PubMed  Google Scholar 

  84. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02944201 (2019).

  85. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03152786 (2019).

  86. Pasquier, E. et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2, 797–809 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Pasquier, E. et al. β-Blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br. J. Cancer 108, 2485–2494 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    CAS  PubMed  Google Scholar 

  89. Sweeney, C. J. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. James, N. D. et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387, 1163–1177 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT01520441 (2015).

  92. Reeves, F. A. et al. Prostatic nerve subtypes independently predict biochemical recurrence in prostate cancer. J. Clin. Neurosci. 63, 213–219 (2019).

    CAS  PubMed  Google Scholar 

  93. Bothwell, M. NGF, BDNF, NT3, and NT4. Handb. Exp. Pharmacol. 220, 3–15 (2014).

    CAS  PubMed  Google Scholar 

  94. Dalal, R. & Djakiew, D. Molecular characterization of neurotrophin expression and the corresponding tropomyosin receptor kinases (trks) in epithelial and stromal cells of the human prostate. Mol. Cell. Endocrinol. 134, 15–22 (1997).

    CAS  PubMed  Google Scholar 

  95. Weeraratna, A. T., Arnold, J. T., George, D. J., DeMarzo, A. & Isaacs, J. T. Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45, 140–148 (2000).

    CAS  PubMed  Google Scholar 

  96. Djakiew, D. Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate 42, 150–160 (2000).

    CAS  PubMed  Google Scholar 

  97. Perez, M., Regan, T., Pflug, B., Lynch, J. & Djakiew, D. Loss of low-affinity nerve growth factor receptor during malignant transformation of the human prostate. Prostate 30, 274–279 (1997).

    CAS  PubMed  Google Scholar 

  98. Liss, M. A. et al. Urinary nerve growth factor as an oncologic biomarker for prostate cancer aggressiveness. Urol Oncol 32, 714–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ban, K., Feng, S., Shao, L. & Ittmann, M. RET signaling in prostate cancer. Clin. Cancer Res. 23, 4885–4896 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dang, T. & Liou, G. Y. Macrophage cytokines enhance cell proliferation of normal prostate epithelial cells through activation of ERK and Akt. Sci Rep 8, 7718 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Baspinar, S., Bircan, S., Ciris, M., Karahan, N. & Bozkurt, K. K. Expression of NGF, GDNF and MMP-9 in prostate carcinoma. Pathol. Res. Pract. 213, 483–489 (2017).

    CAS  PubMed  Google Scholar 

  102. Dakhova, O., Rowley, D. & Ittmann, M. Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo. Clin. Cancer Res. 20, 100–109 (2014).

    CAS  PubMed  Google Scholar 

  103. Gillard, M. et al. Elevation of stromal-derived mediators of inflammation promote prostate cancer progression in African-American men. Cancer Res. 78, 6134–6145 (2018).

    CAS  PubMed  Google Scholar 

  104. Allen, J. K. et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 78, 3233–3242 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, D. et al. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat. Commun. 7, 10798 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mauroy, B. et al. The inferior hypogastric plexus (pelvic plexus): its importance in neural preservation techniques. Surg. Radiol. Anat. 25, 6–15 (2003).

    CAS  PubMed  Google Scholar 

  107. Lunacek, A., Schwentner, C., Fritsch, H., Bartsch, G. & Strasser, H. Anatomical radical retropubic prostatectomy: ‘curtain dissection’ of the neurovascular bundle. BJU Int. 95, 1226–1231 (2005).

    PubMed  Google Scholar 

  108. Eichelberg, C. et al. Nerve distribution along the prostatic capsule. Eur. Urol. 51, 105–111 (2007).

    PubMed  Google Scholar 

  109. Young, D. L. & Halstead, L. A. Pyridostigmine for reversal of severe sequelae from botulinum toxin injection. J. Voice 28, 830–834 (2014).

    PubMed  Google Scholar 

  110. Silva, J. et al. Intraprostatic botulinum toxin type A injection in patients with benign prostatic enlargement: duration of the effect of a single treatment. BMC Urol. 9, 9 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. Griffin, N., Faulkner, S., Jobling, P. & Hondermarck, H. Targeting neurotrophin signaling in cancer: the renaissance. Pharmacol. Res. 135, 12–17 (2018).

    CAS  PubMed  Google Scholar 

  112. Amatu, A., Sartore-Bianchi, A. & Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1, e000023 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. George, D. J., Suzuki, H., Bova, G. S. & Isaacs, J. T. Mutational analysis of the TrkA gene in prostate cancer. Prostate 36, 172–180 (1998).

    CAS  PubMed  Google Scholar 

  114. Warrington, R. J. & Lewis, K. E. Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol. Immunother. 60, 187–195 (2011).

    CAS  PubMed  Google Scholar 

  115. Collins, C. et al. Preclinical and clinical studies with the multi-kinase inhibitor CEP-701 as treatment for prostate cancer demonstrate the inadequacy of PSA response as a primary endpoint. Cancer Biol. Ther. 6, 1360–1367 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Aubert, L. et al. NGF-induced TrkA/CD44 association is involved in tumor aggressiveness and resistance to lestaurtinib. Oncotarget 6, 9807–9819 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    CAS  PubMed  Google Scholar 

  118. Basch, E. et al. Effects of cabozantinib on pain and narcotic use in patients with castration-resistant prostate cancer: results from a phase 2 nonrandomized expansion cohort. Eur. Urol. 67, 310–318 (2015).

    CAS  PubMed  Google Scholar 

  119. Smith, D. C. et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J. Clin. Oncol. 31, 412–419 (2013).

    CAS  PubMed  Google Scholar 

  120. Smith, M. et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J. Clin. Oncol. 34, 3005–3013 (2016).

    CAS  PubMed  Google Scholar 

  121. Basch, E. M. et al. Final analysis of COMET-2: cabozantinib (Cabo) versus mitoxantrone/prednisone (MP) in metastatic castration-resistant prostate cancer (mCRPC) patients (pts) with moderate to severe pain who were previously treated with docetaxel (D) and abiraterone (A) and/or enzalutamide (E) [abstract]. J. Clin. Oncol. 33, (7 Suppl.) 141 (2015).

    Google Scholar 

  122. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02219711 (2019).

  123. Ojemuyiwa, M. A., Madan, R. A. & Dahut, W. L. Tyrosine kinase inhibitors in the treatment of prostate cancer: taking the next step in clinical development. Expert Opin. Emerg. Drugs 19, 459–470 (2014).

    CAS  PubMed  Google Scholar 

  124. Gravina, G. L. et al. Increased expression and activity of p75NTR are crucial events in azacitidine-induced cell death in prostate cancer. Oncol. Rep. 36, 125–130 (2016).

    CAS  PubMed  Google Scholar 

  125. Anagnostopoulou, V. et al. Differential effects of dehydroepiandrosterone and testosterone in prostate and colon cancer cell apoptosis: the role of nerve growth factor (NGF) receptors. Endocrinology 154, 2446–2456 (2013).

    CAS  PubMed  Google Scholar 

  126. Sanchez, C. et al. Effect of GnRH analogs on the expression of TrkA and p75 neurotrophin receptors in primary cell cultures from human prostate adenocarcinoma. Prostate 65, 195–202 (2005).

    CAS  PubMed  Google Scholar 

  127. Bubendorf, L. et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 31, 578–583 (2000).

    CAS  PubMed  Google Scholar 

  128. Cecchini, M. G., Wetterwald, A., Pluijm, G. v. d. & Thalmann, G. N. Molecular and biological mechanisms of bone metastasis. EAU Update Series 3, 214–226 (2005).

    Google Scholar 

  129. Eastham, J. A. Bone health in men receiving androgen deprivation therapy for prostate cancer. J. Urol. 177, 17–24 (2007).

    CAS  PubMed  Google Scholar 

  130. Denk, F., Bennett, D. L. & McMahon, S. B. Nerve growth factor and pain mechanisms. Annu. Rev. Neurosci. 40, 307–325 (2017).

    CAS  PubMed  Google Scholar 

  131. Halvorson, K. G. et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res. 65, 9426–9435 (2005).

    CAS  PubMed  Google Scholar 

  132. Jimenez-Andrade, J. M., Ghilardi, J. R., Castaneda-Corral, G., Kuskowski, M. A. & Mantyh, P. W. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain 152, 2564–2574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. McCaffrey, G. et al. NGF blockade at early times during bone cancer development attenuates bone destruction and increases limb use. Cancer Res. 74, 7014–7023 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Buehlmann, D., Ielacqua, G. D., Xandry, J. & Rudin, M. Prospective administration of anti-nerve growth factor treatment effectively suppresses functional connectivity alterations after cancer-induced bone pain in mice. Pain 160, 151–159 (2019).

    CAS  PubMed  Google Scholar 

  135. Slatkin, N. et al. Fulranumab as adjunctive therapy for cancer-related pain: a phase 2, randomized, double-blind, placebo-controlled, multicenter study. J. Pain 20, 440–452 (2019).

    CAS  PubMed  Google Scholar 

  136. Sopata, M. et al. Efficacy and safety of tanezumab in the treatment of pain from bone metastases. Pain 156, 1703–1713 (2015).

    CAS  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02609828 (2019).

  138. Lee, I. H. et al. Perineural invasion is a marker for pathologically advanced disease in localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 68, 1059–1064 (2007).

    PubMed  PubMed Central  Google Scholar 

  139. Bismar, T. A., Lewis, J. S. Jr., Vollmer, R. T. & Humphrey, P. A. Multiple measures of carcinoma extent versus perineural invasion in prostate needle biopsy tissue in prediction of pathologic stage in a screening population. Am. J. Surg. Pathol. 27, 432–440 (2003).

    PubMed  Google Scholar 

  140. Egan, A. J. & Bostwick, D. G. Prediction of extraprostatic extension of prostate cancer based on needle biopsy findings: perineural invasion lacks significance on multivariate analysis. Am. J. Surg. Pathol. 21, 1496–1500 (1997).

    CAS  PubMed  Google Scholar 

  141. Aaltomaa, S. et al. Expression of Ki-67, cyclin D1 and apoptosis markers correlated with survival in prostate cancer patients treated by radical prostatectomy. Anticancer Res. 26, 4873–4878 (2006).

    CAS  PubMed  Google Scholar 

  142. Lee, J. T. et al. Prediction of perineural invasion and its prognostic value in patients with prostate cancer. Korean J. Urol. 51, 745–751 (2010).

    PubMed  PubMed Central  Google Scholar 

  143. van den Ouden, D., Hop, W. C., Kranse, R. & Schroder, F. H. Tumour control according to pathological variables in patients treated by radical prostatectomy for clinically localized carcinoma of the prostate. Br. J. Urol. 79, 203–211 (1997).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the Cancer Council, New South Wales, Australia and the National Health and Medical Research Council (NHMRC), Australia.

Author information

Authors and Affiliations

Authors

Contributions

B.M. researched data for the article, B.M. and H.H. made substantial contributions to discussion of content and wrote the manuscript, and all authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hubert Hondermarck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks A. Zahalka and J.-P. Theurillat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

March, B., Faulkner, S., Jobling, P. et al. Tumour innervation and neurosignalling in prostate cancer. Nat Rev Urol 17, 119–130 (2020). https://doi.org/10.1038/s41585-019-0274-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0274-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing