Skip to main content
Log in

Thermal stability of nanogradient microstructure produced by surface mechanical rolling treatment in Zircaloy-4

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A nano-/ultrafine grain gradient microstructure, which is composed of high-angle grain boundaries (HAGBs) and low-angle grain boundaries or subgrains of dislocation–twin, was fabricated in Zircaloy-4 using surface mechanical rolling treatment (SMRT). Thermal stability of gradient microstructure has been investigated through characterizing the evolution of microstructure during post-SMRT annealing treatment from 400 to 600 °C using optical microscopy and transmission electron microscopy. Experimental results show that the gradient microstructure exhibits a good thermal stability at 400 °C, since the overall grain size remains similar, except a decrease in dislocation density due to recovery. In comparison, a hierarchical microstructure is formed after annealing at 600 °C. An obvious grain growth was observed at the depth of 50 μm. The activation energy for grain growth of nanograined Zircaloy-4 is estimated to be ~ 161 kJ/mol between 400 and 600 °C. Nano-/ultrafine grains predominantly consisting of HAGBs have the highest thermal stability. Both yield strength and ultimate tensile strength of Zircaloy-4 decrease due to anneal, specifically at 600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 133:1587–1590

    Article  Google Scholar 

  2. Chen G, Gao JW, Cui Y, Gao H, Guo X, Wu SZ (2018) Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium alloy processed by SMAT. J Alloys Compd 735:536–546

    Article  CAS  Google Scholar 

  3. Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C (2013) Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surf Coat Tech 224:82–87

    Article  CAS  Google Scholar 

  4. Li W, Liu P, Ma FC, Rong YH (2009) Microstructural characterization of nanocrystalline nickel produced by surface mechanical attrition treatment. J Mater Sci 44:2925–2930. https://doi.org/10.1007/s10853-009-3386-y

    Article  CAS  Google Scholar 

  5. Lu K (2014) Making strong nanomaterials ductile with gradients. Science 345:1455–1456

    Article  CAS  Google Scholar 

  6. Bagheri S, Guagliano M (2009) Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys. Surf Eng 25(1):3–14

    Article  CAS  Google Scholar 

  7. Azadmanjiri J, Berndt CC, Kapoor A, Wen C (2015) Development of surface nano-crystallization in alloys by surface mechanical attrition treatment (SMAT). Crit Rev Solid State Mater Sci 40:164–181

    Article  CAS  Google Scholar 

  8. Grosdidier T, Novelli M (2019) Recent developments in the application of surface mechanical attrition treatments for improved gradient structures: processing parameters and surface reactivity. Mater Trans 60:1344–1355

    Article  CAS  Google Scholar 

  9. Shewmon PG (1969) Transformation in Metals. McGraw-Hill, New York

    Google Scholar 

  10. Lu K (2016) Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater 16019:1–13

    Google Scholar 

  11. Zhou X, Li XY, Lu K (2019) Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading. Phys Rev Lett 122(126101):1–6

    Google Scholar 

  12. Zhou X, Li XY, Lu K (2018) Enhanced thermal stability of nanograined metals below a critical grain size. Science 360:526–530

    Article  CAS  Google Scholar 

  13. Chang HW, Kelly PM, Shi YN, Zhang MX (2012) Thermal stability of nanocrystallized surface produced by surface mechanical attrition treatment in aluminum alloys. Surf Coat Tech 206:3970–3980

    Article  CAS  Google Scholar 

  14. Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Thermal stability of nanocrystalline Fe-Zr alloys. Mater Sci Eng, A 527:3572–3580

    Article  Google Scholar 

  15. Ren XD, Yang XQ, Zhou WF, Huang JJ, Ren YP, Wang CC, Ye YX, Li L (2018) Thermal stability of surface nano-crystallization layer in AZ91D magnesium alloy induced by laser shock peening. Surf Coat Tech 334:182–188

    Article  CAS  Google Scholar 

  16. Pandey V, Chattopadhyay K, Srinivas NCS, Singh V (2019) Thermal and microstructural stability of nanostructured surface of the aluminium alloy 7075. Mater Charact 151:242–251

    Article  CAS  Google Scholar 

  17. Boyer RR, Briggs RD (2005) The use of β titanium alloys in the aerospace industry. J Mater Eng Perform 14:681–685

    Article  CAS  Google Scholar 

  18. Liu Y, Jin B, Lu J (2015) Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment. Mater Sci Eng, A 636:446–451

    Article  CAS  Google Scholar 

  19. Wu XL, Jiang P, Chen L, Yuan FP, Zhu YT (2014) Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 111:7197–7201

    Article  CAS  Google Scholar 

  20. Li JJ, Weng GJ, Chen SH, Wu XL (2017) On strain hardening mechanism in gradient nanostructures. Int J Plast 88:89–107

    Article  CAS  Google Scholar 

  21. Cox B (2005) Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J Nucl Mater 336:331–368. https://doi.org/10.1016/j.jnucmat.2004.09.029

    Article  CAS  Google Scholar 

  22. Zinkle SJ, Was GS (2013) Materials challenges in nuclear energy. Acta Mater 61:735–758

    Article  CAS  Google Scholar 

  23. Tupin M, Verlet R, Colas K, Jublot M, Baldacchino G, Wolski K (2018) Effect of ion irradiation of the metal matrix on the oxidation rate of Zircaloy-4. Corros Sci 136:28–37

    Article  CAS  Google Scholar 

  24. Campello D, Tardif N, Moula M, Baietto MC, Coret M, Desquines J (2017) Identification of the steady-state creep behavior of Zircaloy-4 claddings under simulated Loss-Of-Coolant Accident conditions based on a coupled experimental/numerical approach. Int J Solids Struct 115–116:190–199

    Article  Google Scholar 

  25. Xin C, Sun QY, Xiao L, Sun J (2018) Biaxial fatigue property enhancement of gradient ultra-fine-grained Zircaloy-4 prepared by surface mechanical rolling treatment. J Mater Sci 53:12492–12503. https://doi.org/10.1007/s10853-018-2391-4

    Article  CAS  Google Scholar 

  26. Valiev RZ, Korznikov AV, Mulyukov RR (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng, A 168:141–148

    Article  Google Scholar 

  27. Roland T, Retraint D, Lu K, Lu J (2007) Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater Sci Eng, A 445–446:281–288

    Article  Google Scholar 

  28. Bacca M, Hayhurst DR, McMeeking RM (2015) Continuous dynamic recrystallization during severe plastic deformation. Mech Mater 90:148–156

    Article  Google Scholar 

  29. Chen WX, Hu BJ, Jia CN, Zheng CW, Li DZ (2019) Continuous dynamic recrystallization during the transient deformation in a Ni-30%Fe austenitic model alloy. Mater Sci Eng, A 751:10–14

    Article  CAS  Google Scholar 

  30. Hazra SS, Gazder AA, Pereloma EV (2009) Stored energy of a severely deformed interstitial free steel. Mater Sci Eng, A 524:158–167

    Article  Google Scholar 

  31. Novelli M, Bocher P, Grosdidier T (2018) Effect of cryogenic temperatures and processing parameters on gradient-structure of a stainless steel treated by ultrasonic surface mechanical attrition treatment. Mater Charact 139:197–207

    Article  CAS  Google Scholar 

  32. Atkinson HV (1988) Overview no. 65: theories of normal grain growth in pure single phase systems. Acta Metall 36:469–491

    Article  CAS  Google Scholar 

  33. Vandermeer RA, Hu H (1994) On the grain growth exponent of pure iron. Acta Metall Mater 42:3071–3075

    Article  CAS  Google Scholar 

  34. Vieregge K, Herzig C (1990) Grain-boundary diffusion in α-zirconium: part I: self-diffusion. J Nucl Mater 173:118–129

    Article  CAS  Google Scholar 

  35. Samih Y, Beausir B, Bolle B, Grosdidier T (2013) In-depth quantitative analysis of the microstructures produced by surface mechanical attrition treatment (SMAT). Mater Charact 83:129–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the support from the National Natural Science Foundation of China (51671158, 51621063, 51471129), 973 Program of China (2014CB644003), and the 111 Project 2.0 (PB2018008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaoyan Sun or Lin Xiao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, C., Yang, D., Sun, Q. et al. Thermal stability of nanogradient microstructure produced by surface mechanical rolling treatment in Zircaloy-4. J Mater Sci 55, 4926–4939 (2020). https://doi.org/10.1007/s10853-019-04303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04303-z

Navigation