Skip to main content

Advertisement

Log in

Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effect of salinity on the acute and sub-chronic toxicity of silver nanoparticles (AgNPs) in Persian sturgeon. This was evaluated by exposing Persian sturgeon to AgNPs in three salinities: freshwater (F: 0.4 ppt), brackish water 1 (B1: 6 ± 0.2 ppt), and brackish water 2 (B2: 12 ± 0.3 ppt) for 14 days, which was followed by analysis of alterations in plasma chemistry and histopathology of the gills, liver, and intestine. Values of 96-h median lethal concentration (LC50) were calculated as 0.89 mg/L in F, 2.07 mg/L in B1, and 1.59 mg/L in B2. After sub-chronic exposures, plasma cortisol, glucose, potassium, and sodium levels illustrated no significant changes within each salinity level. In F, 0.2 mg/L AgNP caused the highest levels of alkaline phosphatase and osmolality levels. In B1, 0.6 mg/L AgNP induced the highest level of alkaline phosphatase and elevated plasma osmolality was recorded in all AgNP-exposed treatments in comparison with the controls. The B2 treatment combined with 0.6 mg/L AgNP significantly reduced plasma chloride level. The results showed elevating salinity significantly increased osmolality, chloride, sodium, and potassium levels of plasma in the fish exposed to AgNPs. The abundance of the tissue lesions was AgNP concentration-dependent, where the highest number of damages was observed in the gills, followed by liver and intestine, respectively. The histopathological study also confirmed alterations such as degeneration of lamella, lifting of lamellar epithelium, hepatic vacuolation, pyknotic nuclei, and cellular infiltration of the lamina propria elicited by AgNPs in the gills, liver, and intestine of Persian sturgeon. In conclusion, the stability of AgNPs in aquatic environments can be regulated by changing the salinity, noting that AgNPs are more stable in low salinity waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedi S, Sharifpour I, Mozanzadeh MT, Zorriehzahra J, Khodabandeh S, Gisbert E (2015) A histological and ultrastructural study of the skin of rainbow trout (Oncorhynchus mykiss) alevins exposed to different levels of ultraviolet B radiation. J Photochem Photobiol B 147:56–62

    Article  CAS  Google Scholar 

  • Afshinnia K, Marrone B, Baalousha M (2018) Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles. Sci Total Environ 625:1518–1526

    Article  CAS  Google Scholar 

  • Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115

    Article  CAS  Google Scholar 

  • Ale A, Rossi AS, Bacchetta C, Gervasio S, de la Torre FR, Cazenave J (2018) Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish. Ecol Indic 93:1190–1198

    Article  CAS  Google Scholar 

  • APHA, American Public Health Association, American Water Works Association, Water Environment Association (1998) Standard methods for the examination of water and wastewater. 20th edition. American Public Health Association, Washington, D.C., USA

  • Ansar S, Abudawood M, Hamed SS, Aleem MM (2017) Sodium selenite protects against silver nanoparticle-induced testicular toxicity and inflammation. Biol Trace Elem Res 175:161

    Article  CAS  Google Scholar 

  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:1–14

    Article  CAS  Google Scholar 

  • Bacchetta C, Ale A, Simoniello MF, Gervasio S, Davico C, Rossi AS, Desimone MF, Poletta G, López G, Monserrat JM, Cazenave J (2017) Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Indic 76:230–239

    Article  CAS  Google Scholar 

  • Banan A, Kalbassi Masjed Shahi MR, Bahmani M, Yazdani Sadati MA (2016) Toxicity assessment of silver nanoparticles in Persian sturgeon (Acipenser persicus) and starry sturgeon (Acipenser stellatus) during early life stages. Environ Sci Pollut Res Int 23:10139–10144

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34

    Article  Google Scholar 

  • Best JH, Eddy FB, Codd GA (2003) Effects of microcystis cells, cell extracts and lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus mykiss Walbaum. Aquat Toxicol 64:419–426

    Article  CAS  Google Scholar 

  • Bronzi P, Rosenthal H, Gessner J (2011) Global sturgeon aquaculture production: an overview. J Appl Ichthyol 27(2):169–175

    Article  Google Scholar 

  • Burke J, Handy RD, Roast SD (2003) Effect of low salinity on cadmium accumulation and calcium homeostasis in the shore crab (Carcinus maenas) at fixed free Cd2+ concentrations. Environ Toxicol Chem 22:2761–2767

    Article  CAS  Google Scholar 

  • Cambier S, Rogeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, Iversen TG, Guignard C, Kruszewski M, Hoffmann L, Audinot JN, Ropstad E, Gutleb AC (2018) Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. Sci Total Environ 610-611:972–982

    Article  CAS  Google Scholar 

  • Christensen EAF, Svendsen MBS, Steffensen JF (2017) Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures. J Fish Biol 90:819–833

    Article  CAS  Google Scholar 

  • Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M (2018) A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms. Regul Toxicol Pharmacol 98:231–239

    Article  CAS  Google Scholar 

  • Erfan Shahkar, Dae-jung Kim, Mahmoud Mohseni, Hyeonho Yun, Sungchul C. Bai, (2015) Effects of Salinity Changes on Hematological Responses in Juvenile Ship Sturgeon Acipenser nudiventris. Fisheries and aquatic sciences 18 (1):45–50

  • Firat Ö, Cogun HY, Yüzereroğlu TA, Gök G, Firat Ö, Kargin F, Kötemen Y (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37:657–666

    Article  CAS  Google Scholar 

  • Gambardella C, Costa E, Piazza V, Fabbrocini A, Magi E, Faimali M, Garaventa F (2015) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49

    Article  CAS  Google Scholar 

  • Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, von Gleich A, Gottschalk F (2018) Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep 81:1565

    Article  CAS  Google Scholar 

  • Griffitt RJ, Lavelle CM, Kane AS, Denslow ND, Barber DS (2013) Chronic nanoparticulate silver exposure results in tissue accumulation and transcriptomic changes in zebrafish. Aquat Toxicol 130-131:192–200

    Article  CAS  Google Scholar 

  • Handy RD, Al-Bairuty G, Al-Jubory A, Ramsden CS, Boyle D, Shaw BJ, Henry TB (2011) Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach. J Fish Biol 79:821–853

    Article  CAS  Google Scholar 

  • Imsland AK, Gunnarsson S, Foss A, Stefansson SO (2003) Gill Na+,K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture 218:671–683

    Article  CAS  Google Scholar 

  • INIC (2019) Iran Nanotechnology Initiative Council’s website. https://en.nano.ir/. Accessed 10 Aug 2019

  • Jang MH, Kim WK, Lee SK, Henry TB, Park JW (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48(19):11568–11574

    Article  CAS  Google Scholar 

  • Johari SA, Kalbassi MR, Soltani M, Yu IJ (2013) Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iran J Fish Sci 12(1):76–95

    Google Scholar 

  • Johari SA, Kalbassi MR, Yu IJ, Lee JH (2015) Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comp Clin Pathol 24(5):995–1007

    Article  CAS  Google Scholar 

  • Johari SA, Sarkheil M, Tayemeh MB, Veisi S (2018) Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) in halophilic microalgae, Dunaliella salina. Chemosphere 209:156–162

    Article  CAS  Google Scholar 

  • Joo HS, Kalbassi MR, Yu IJ, Lee JH, Johari SA (2013) Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquat Toxicol 140-141(7):398–406

    Google Scholar 

  • Joo HS, Kalbassi MR, Johari SA (2018) Hematological and histopathological effects of silver nanoparticles in rainbow trout (Oncorhynchus mykiss)—how about increase of salinity? Environ Sci Pollut Res 25:15449

    Article  CAS  Google Scholar 

  • Katuli KK, Massarsky A, Hadadi A, Pourmehran Z (2014) Silver nanoparticles inhibit the gill Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio). Ecotoxicol Environ Saf 106:173–180

    Article  CAS  Google Scholar 

  • Khosravi-Katuli K, Shabani A, Paknejad H, Imanpoor MR (2018) Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): accumulation, physiology and histopathology. J Hazard Mater 359:373–381

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life-cycle emissions of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  • Lacave JM, Vicario-Parés U, Bilbao E, Gilliland D, Mura F, Dini L, Cajaraville MP, Orbea A (2018) Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels. Sci Total Environ 642:1209–1220

    Article  CAS  Google Scholar 

  • Lee B, Duong CN, Cho J, Lee J, Kim K, Seo Y, Kim P, Choi K, Yoon J (2012) Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). J Biomed Biotechnol 2012:14

    Google Scholar 

  • Lee JW, Kim JE, Shin YJ, Ryu JS, Eom IC, Lee JS, Kim Y, Kim PJ, Choi KH, Lee BC (2014) Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotoxicol Environ Saf 104:9–17

    Article  CAS  Google Scholar 

  • Martínez-Alvarez RM, Hidalgo MC, Domezain A, Morales AE, García-Gallego M, Sanz A (2002) Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. J Exp Biol 205:3699–3706

    Google Scholar 

  • Masouleh FF, Amiri BM, Mirvaghefi A, Ghafoori H, Madsen SS (2017) Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901). Environ Monit Assess 189(9):448

    Article  CAS  Google Scholar 

  • McCarthy MP, Carroll DL, Ringwood AH (2013) Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. Aquat Toxicol 138:123–128

    Article  CAS  Google Scholar 

  • Murray LM, Rennie MD, Enders EC, Pleskach K, Martin JD (2017) Effect of nanosilver on cortisol release and morphometrics in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 36:1606–1613

    Article  CAS  Google Scholar 

  • Nia JR (2011) Preparation of colloidal nanosilver. Google US Patent

  • Nickum JG, Bart HL Jr, Bowser PR, Greer IE, Hubbs C, Jenkins JA, MacMillan JR, Rachlin JW, Rose JD, Sorensen PW, Tomasso JR (2004) Guidelines for the use of fishes in research. American Fisheries Society, Bethesda, 54 pages

    Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (1999) NIOSH manual of analytical methods, method no. 7300. NIOSH, Cincinnati

  • OECD (1992) OECD guidelines for the testing of chemicals. Guideline No. 203: Acute Toxicity for Fish. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  • OECD (1984) OECD guidelines for the testing of chemicals. Guideline No. 204: Fish, Prolonged Toxicity Test: 14-Day Study. Organization for Economic Cooperation and Development, Paris, France

    Google Scholar 

  • Ostaszewska T, Chojnacki M, Kamaszewski M, Sawosz-Chwalibóg E (2016) Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environ Sci Pollut Res 23(2):1621–1633

    Article  CAS  Google Scholar 

  • Pulit-Prociak J, Banach M (2016) Silver nanoparticles—a material of the future...? Open Chem 14:76–91

    Article  CAS  Google Scholar 

  • Redding JM, Schreck CB, Birks EK, Ewing RD (1984) Cortisol and its effect on plasma thyroid hormone and electrolyte concentrations in freshwater and during seawater acclimation in yearling coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol 56:146–155

    Article  CAS  Google Scholar 

  • Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AMVM, Loureiro S (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466-467:232–241

    Article  CAS  Google Scholar 

  • Hischier R (2014) Life cycle assessment of manufactured nanomaterials: inventory modelling rules and application example. The International Journal of Life Cycle Assessment 19 (4):941–943

  • Salari Joo H, Kalbassi MR, Johari SA (2012) Effect of water salinity on acute toxicity of colloidal silver nanoparticles in rainbow trout (Oncorhynchus mykiss) larvae. Iran J Health Environ 5(2):121–131

    Google Scholar 

  • Sendra M, Yeste M, Gatica J, Moreno-Garrido I, Blasco J (2017) Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere 179:279–289

    Article  CAS  Google Scholar 

  • Shaluei F, Hedayati A, Jahanbakhshi A, Kolangi H, Fotovat M (2013) Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Hum Exp Toxicol 32(12):1270–1277

    Article  CAS  Google Scholar 

  • Shobana C, Rangasamy B, Poopal RK, Renuka S, Ramesh M (2018) Green synthesis of silver nanoparticles using Piper nigrum: tissue-specific bioaccumulation, histopathology, and oxidative stress responses in Indian major carp Labeo rohita. Environ Sci Pollut Res 25(12):11812–11832

    Article  CAS  Google Scholar 

  • Skeggs L Jr, Hochstrassat J (1964) Colorimetric determination of chloride in serum and plasma. Clin Chem 10:918–936

    Article  CAS  Google Scholar 

  • Sotoudeh E, Mardani F (2018) Antioxidant-related parameters, digestive enzyme activity and intestinal morphology in rainbow trout (Oncorhynchus mykiss) fry fed graded levels of red seaweed, Gracilaria pygmaea. Aquac Nutr 24:777–785

    Article  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory, Beilstein J. Nanotechnol. 6:1769–1780

    CAS  Google Scholar 

  • Wang J, Wang W (2014) Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environ Toxicol Chem 33(3):632–640

    Article  CAS  Google Scholar 

  • Wang H, Burgess RM, Cantwell MG, Portis LM, Perron MM, Wu F, Ho KT (2014) Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: role of salinity and dissolved organic carbon. Environ Toxicol Chem 33(5):1023–1029

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32:165–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding authors would like to acknowledge the support of Lorestan University, Tarbiat Modares University, University of Nebraska at Omaha and Iran Nanotechnology Initiative Council.

Funding

This study was financially supported by Iran’s Ministry of Science, Research and Technology (MSRT, IRAN) (grant number 92-5641).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashkan Banan or Mohammad Reza Kalbassi.

Additional information

Responsible Editor: Philipp Gariguess

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banan, A., Kalbassi, M.R., Bahmani, M. et al. Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus). Environ Sci Pollut Res 27, 10658–10671 (2020). https://doi.org/10.1007/s11356-020-07687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07687-7

Keywords

Navigation